Today an increasing need for gas turbines with extremely low flow rates can be noticed in many industrial sectors, e.g. power generation, aircraft or automotive turbo chargers. For any application it is essential for the turbine to operate at best possible efficiency. It is known that for turbines the specific optimum achievable power output decreases with smaller size. A major contribution for this reduction in efficiency comes from the relative increase of aerodynamic losses in smaller turbine stages. In the early turbine design stage, easy and fast to use two-dimensional calculation codes are widely used. In order to produce qualitatively good results, all of these codes contain a diversity of loss models that more or less exactly describe physical effects which generate losses. It emerges to be a real problem that most of these empirical models were derived for rather large scale turbo machines and that they are not necessarily suitable for application to small turbines. In this paper many of the commonly known and well established loss models used for the preliminary design of radial turbines were collected, reviewed, and validated with respect to their applicability to small-size turbines, i.e. turbines of inlet diameter smaller than 40 mm. Comprehensive numerical investigations were performed and the results were used to check and verify the outcome of loss models. Based on the results, loss models have been improved. Furthermore, new correlations were developed in order to raise the quality of loss prediction especially for the design of small-size turbines. After receiving an optimum set of loss prediction models, all of them were implemented into a two-dimensional solver program for the analytical iterative solution of a complete turbine stage. Hence a powerful tool for preliminary radial turbine design has been created. This program enables the user to analytically evaluate the effects of changing key design properties on performance. These are amongst others the optimum rotor inlet flow angle according to the slip-factor definition, the value of flow deviation, and hence the optimum blade outlet angle for a minimum adverse flow-swirl at turbine outlet. Complementarily the turbine key performance indicators, e.g. pressure ratio, power output, rotational turbine speed, and mass flow can be calculated for optimum efficiency of a given turbine geometry. The paper presents the most important loss models implemented in the new code and weights their relative importance to the performance of small size radial turbines. The data acquisition was done using the new code itself as well as accompanying full 3D CFD calculations.
With an increasing need for gas turbines with rather low flow rates in many industrial applications, e.g. decentralized power generation, aircrafts or automotive turbochargers, the development of small size radial turbines becomes more and more important. A major step in the development of a radial turbine stage is the preliminary design, which is the definition of basic geometrical features and the calculation of general turbine flow parameters at the design point and within the operating range. These are mainly the rotational speed, the expansion ratio, the flow rate and in particular the expected turbine efficiency. In a radial turbine stage, the volute component delivers the flow to the rotor wheel and according to the geometrical form it defines major flow parameters like the mass flow parameter or the absolute rotor inlet flow angle. Amongst others, the way the flow enters the turbine wheel represents one of the most important loss generating factors. Thus, on the one hand an approach is necessary for the calculation of the optimum rotor inlet flow angle, in order to avoid dispensable losses due to secondary flow in the turbine wheel region. On the other hand, the volute tongue generates flow non-uniformity which has an effect on the overall circumferential averaged rotor inlet flow angle. Furthermore, the local flow pattern downstream of the volute tongue can generate suboptimal flow conditions for the turbine wheel. Hussain and Bhinder [1] measured the flow field at the outlet of a vaneless volute at different circumferential positions and detected a variation of the outlet angle of about Δα = 10°. The authors conclusion was, that the influence on the stage performance of flow non-uniformity generated by the volute could exceed the one of pressure losses through the volute. In this paper, the effect of different geometrical volute parameters on the flow condition especially at the turbine wheel inlet area is investigated. Experimental data of the influence of different volute tongue geometries on the flow field is difficult to generate. Hence, comprehensive numerical investigations are made using steady 3D-CFD calculations of the turbine volute as well as calculations of complete turbine stages including a turbine wheel geometry. Based on the numerical results, a design guideline is developed to estimate the influence of the geometric volute parameters on the flow and to raise the quality of the preliminary design process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.