Predicting the trend of stock prices is a central topic in financial engineering. Given the complexity and nonlinearity of the underlying processes we consider the use of neural networks in general and sentiment analysis in particular for the analysis of financial time series. As one of the biggest social media platforms with a user base across the world, Twitter offers a huge potential for such sentiment analysis. In fact, stocks themselves are a popular topic in Twitter discussions. Due to the real-time nature of the collective information quasi contemporaneous information can be harvested for the prediction of financial trends. In this study, we give an introduction in financial feature engineering as well as in the architecture of a Long Short-Term Memory (LSTM) to tackle the highly nonlinear problem of forecasting stock prices. This paper presents a guide for collecting past tweets, processing for sentiment analysis and combining them with technical financial indicatorsto forecast the stock prices of Apple 30m and 60m ahead. A LSTM with lagged close price is used as a baseline model. We are able to show that a combination of financial and Twitter features can outperform the baseline in all settings. The code to fully replicate our forecasting approach is available in the Appendix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.