Powered mobility has been found to have positive effects on young children with severe physical disabilities, but the impact on the family has been less well documented. We evaluated the impact of early powered mobility on parental stress, negative emotions, perceived social interactions, and parental satisfaction with wheelchair characteristics such as size and durability. The participants were parents of 23 children with disabilities-10 with orthopedic disabilities (average age 30.1 months) and 13 with cerebral palsy (average age 47.0 months). Pretest assessments were completed two times: at initial wheelchair evaluation and at wheelchair delivery. A posttest assessment was completed after each child had used the wheelchair for 4-6 months. Parents reported a lower perceived level of stress at the time of wheelchair delivery, although the magnitude of this effect was fairly small, standardized mean difference (δ) = .27. They also reported an increased satisfaction with their child's social and play skills (δ = .38), ability to go where desired (δ = .86), sleep/wake pattern (δ = .61), and belief that the general public accepts their child (δ = .39) after several months using the wheelchair. Parents reported an increase in interactions within the family at the time of wheelchair delivery (δ = .66). There was no decrease in negative emotions. Parents were satisfied with most factors relating to the wheelchair itself, with areas of concern being wheelchair size and difficulty adjusting the wheelchair. The findings suggest that self-initiated powered mobility for a young child had a positive impact on the family.
Powered mobility can have an important cognitive and psychosocial impact on young children who are unable to move independently. Twenty-three children with physical disabilities between the ages of 18 months and 6 years participated in this study. Data evaluating social skills, frequency of mobility play activities, frequency of interaction with toys/objects, and play/verbal developmental levels were collected at wheelchair evaluation, wheelchair delivery, and approximately 6 months later. Significant increases were found in parental perceptions of positive social skills for younger children after receiving a wheelchair; slightly older children showed improvements in social skills before the wheelchair was received; no changes were found in negative social skills. Parental ratings also indicated a significantly greater difficulty remaining engaged in tasks after receiving a wheelchair. A significant increase was noted in the number of mobility activities during indoor free play but no difference was seen in interaction with toys or objects. Improvement in the qualitative level of outdoor interactive free play was reported but there was no change in verbal interactions. This article discusses the potential positive impact of early powered mobility. These findings may be helpful in justifying the recommendation of powered mobility to young children and in justifying medical necessity of powered mobility for reimbursement by third party payers.
Independent mobility in early childhood has been associated with the development of various cognitive and psychosocial skills. However, children with physical disabilities are not always able to move independently and may be at risk for delays in these areas. Early provision of powered mobility can offer young children an opportunity for independent mobility. Despite this, there is little information to help determine when a young child has the cognitive skills necessary to operate a powered wheelchair safely. This current research aims to identify these skills. A cognitive assessment battery and a wheelchair mobility training and assessment program were developed. Twenty-six children with physical disabilities between the ages of 20 and 36 months were evaluated on the cognitive assessment and participated in the wheelchair training and assessment program. A stepwise regression analysis was used to determine which of the cognitive skills predicted wheelchair mobility performance. The cognitive domains of spatial relations and problem solving were found to be significant and accounted for 57% of the variance in wheelchair skills. Developmental cut-off points on these scales as they relate to wheelchair skills are presented and clinical applications are discussed.
BackgroundExperiencing independent mobility is important for children with a severe movement disability, but learning to drive a powered wheelchair can be labor intensive, requiring hand-over-hand assistance from a skilled therapist.MethodsTo improve accessibility to training, we developed a robotic wheelchair trainer that steers itself along a course marked by a line on the floor using computer vision, haptically guiding the driver's hand in appropriate steering motions using a force feedback joystick, as the driver tries to catch a mobile robot in a game of "robot tag". This paper provides a detailed design description of the computer vision and control system. In addition, we present data from a pilot study in which we used the chair to teach children without motor impairment aged 4-9 (n = 22) to drive the wheelchair in a single training session, in order to verify that the wheelchair could enable learning by the non-impaired motor system, and to establish normative values of learning rates.Results and DiscussionTraining with haptic guidance from the robotic wheelchair trainer improved the steering ability of children without motor impairment significantly more than training without guidance. We also report the results of a case study with one 8-year-old child with a severe motor impairment due to cerebral palsy, who replicated the single-session training protocol that the non-disabled children participated in. This child also improved steering ability after training with guidance from the joystick by an amount even greater than the children without motor impairment.ConclusionsThe system not only provided a safe, fun context for automating driver's training, but also enhanced motor learning by the non-impaired motor system, presumably by demonstrating through intuitive movement and force of the joystick itself exemplary control to follow the course. The case study indicates that a child with a motor system impaired by CP can also gain a short-term benefit from driver's training with haptic guidance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.