Bottom trawling is the most widespread human activity affecting seabed habitats. Here, we collate all available data for experimental and comparative studies of trawling impacts on whole communities of seabed macroinvertebrates on sedimentary habitats and develop widely applicable methods to estimate depletion and recovery rates of biota after trawling. Depletion of biota and trawl penetration into the seabed are highly correlated. Otter trawls caused the least depletion, removing 6% of biota per pass and penetrating the seabed on average down to 2.4 cm, whereas hydraulic dredges caused the most depletion, removing 41% of biota and penetrating the seabed on average 16.1 cm. Median recovery times posttrawling (from 50 to 95% of unimpacted biomass) ranged between 1.9 and 6.4 y. By accounting for the effects of penetration depth, environmental variation, and uncertainty, the models explained much of the variability of depletion and recovery estimates from single studies. Coupled with large-scale, high-resolution maps of trawling frequency and habitat, our estimates of depletion and recovery rates enable the assessment of trawling impacts on unprecedented spatial scales.
Bottom trawling causes widespread physical disturbance of sediments in seas and oceans and affects benthic communities by removing target and non-target species and altering habitats. One aspiration of the ecosystem approach to management is to conserve function as well as biodiversity, but trawling impacts on benthic community function need to be understood before they can be managed. Here we present the large scale and long term impact of chronic trawling on the functional composition of benthic invertebrate communities using a comprehensive set of functional traits. The effects of chronic trawling disturbance on the functional composition of faunal benthic invertebrate communities, as sampled with a small beam trawl, were investigated at 6 to 13 sites in each of 4 contrasting regions of the North Sea. Each site was subject to known levels of trawling disturbance. Information on the life history and ecological function traits of the taxa sampled was translated into fuzzy coding and used to analyse the relationship between life history and functional roles within the ecosystem. Multivariate analyses were used to examine changes in the distribution of traits over gradients of trawling intensity. Changes in the functional structure of the community due to the effects of long-term trawling were identified in 3 of the 4 areas sampled. Filter-feeding, attached and larger animals were relatively more abundant in lightly trawled areas, while areas with higher levels of trawling were characterised by a higher relative biomass of mobile animals and infaunal and scavenging invertebrates. Univariate analysis of selected traits confirmed the patterns observed in multivariate analysis. These results demonstrate that chronic bottom trawling can lead to large scale shifts in the functional composition of benthic communities, with likely effects on the functioning of coastal ecosystems.
Climate change has been predicted to lead to changes in local and regional species richness through species extinctions and latitudinal ranges shifts. Here, we show that species richness of fish in the North Sea, a group of ecological and socio-economical importance, has increased over a 22-year period and that this rise is related to higher water temperatures. Over eight times more fish species displayed increased distribution ranges in the North Sea (mainly small-sized species of southerly origin) compared with those whose range decreased (primarily large and northerly species). This increase in species richness can be explained from the fact that fish species richness in general decreases with latitude. This observation confirms that the interaction between largescale biogeographical patterns and climate change may lead to increasing species richness at temperate latitudes.
Bottom trawling causes widespread disturbance of sediments in shelf seas and can have a negative impact on benthic fauna. We conducted a large-scale assessment of bottom trawl fishing of benthic fauna in different habitats, using a theoretical, size-based model that included habitat features. Species richness was estimated based on a generalized body mass versus species richness relationship. The model was validated by sampling 33 stations subject to a range of trawling intensities in four shallow, soft sediment areas in the North Sea. Both the model and the field data demonstrated that trawling reduced biomass, production, and species richness. The impacts of trawling were greatest in areas with low levels of natural disturbance, while the impact of trawling was small in areas with high rates of natural disturbance. For the North Sea, the model showed that the bottom trawl fleet reduced benthic biomass and production by 56% and 21%, respectively, compared with an unfished situation. Because of the many simplifications and assumptions required to synthesize these data, additional work is required to refine the model and evaluate applicability in other geographic areas. Our model enables managers to understand the consequences of altering the distribution of fishing activities on benthic production and hence on food web processes
SignificanceWe conducted a systematic, high-resolution analysis of bottom trawl fishing footprints for 24 regions on continental shelves and slopes of five continents and New Zealand. The proportion of seabed trawled varied >200-fold among regions (from 0.4 to 80.7% of area to a depth of 1,000 m). Within 18 regions, more than two-thirds of seabed area remained untrawled during study periods of 2–6 years. Relationships between metrics of total trawling activity and footprint were strong and positive, providing a method to estimate trawling footprints for regions where high-resolution data are not available. Trawling footprints were generally smaller in regions where fisheries met targets for exploitation rates, implying collateral environmental benefits of effective fisheries management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.