A variety of metamodeling techniques have been developed in the past decade to reduce the computational expense of computer-based analysis and simulation codes. Metamodeling is the process of building a “model of a model” to provide a fast surrogate for a computationally expensive computer code. Common metamodeling techniques include response surface methodology, kriging, radial basis functions, and multivariate adaptive regression splines. In this paper, we investigate support vector regression (SVR) as an alternative technique for approximating complex engineering analyses. The computationally efficient theory behind SVR is reviewed, and SVR approximations are compared against the aforementioned four metamodeling techniques using a test bed of 26 engineering analysis functions. SVR achieves more accurate and more robust function approximations than the four metamodeling techniques, and shows great potential for metamodeling applications, adding to the growing body of promising empirical performance of SVR.
PAST is a new web service providing fast structural queries of the Protein Data Bank. The search engine is based on an adaptation of the generalized suffix tree and relies on a translation- and rotation-invariant representation of the protein backbone. The search procedure is completely independent of the amino acid sequence of the polypeptide chains. The web service works best with, but is not necessarily limited to, shorter fragments such as functional motifs—a task that most other tools do not perform well. Usual query times are in the order of seconds, allowing a truly interactive use. Unlike most established tools, PAST does not prefilter the dataset or exclude parts of the search space based on statistical reasoning. The server is freely available at .
A variety of metamodeling techniques have been developed in the past decade to reduce the computational expense of computer-based analysis and simulation codes. Metamodeling is the process of building a “model of a model” that provides a fast surrogate for a computationally expensive computer code. Common metamodeling techniques include response surface methodology, kriging, radial basis functions, and multivariate adaptive regression splines. In this paper, we present Support Vector Regression (SVR) as an alternative technique for approximating complex engineering analyses. The computationally efficient theory behind SVR is presented, and SVR approximations are compared against the aforementioned four metamodeling techniques using a testbed of 22 engineering analysis functions. SVR achieves more accurate and more robust function approximations than these four metamodeling techniques and shows great promise for future metamodeling applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.