Identifying the downstream effects of disease-associated single nucleotide polymorphisms (SNPs) is challenging: the causal gene is often unknown or it is unclear how the SNP affects the causal gene, making it difficult to design experiments that reveal functional consequences. To help overcome this problem, we performed the largest expression quantitative trait locus (eQTL) meta-analysis so far reported in non-transformed peripheral blood samples of 5,311 individuals, with replication in 2,775 individuals. We identified and replicated trans-eQTLs for 233 SNPs (reflecting 103 independent loci) that were previously associated with complex traits at genome-wide significance. Although we did not study specific patient cohorts, we identified trait-associated SNPs that affect multiple trans-genes that are known to be markedly altered in patients: for example, systemic lupus erythematosus (SLE) SNP rs49170141 altered C1QB and five type 1 interferon response genes, both hallmarks of SLE2-4. Subsequent ChIP-seq data analysis on these trans-genes implicated transcription factor IKZF1 as the causal gene at this locus, with DeepSAGE RNA-sequencing revealing that rs4917014 strongly alters 3’ UTR levels of IKZF1. Variants associated with cholesterol metabolism and type 1 diabetes showed similar phenomena, indicating that large-scale eQTL mapping provides insight into the downstream effects of many trait-associated variants.
We describe a reference panel of 64,976 human haplotypes at 39,235,157 SNPs constructed using whole genome sequence data from 20 studies of predominantly European ancestry. Using this resource leads to accurate genotype imputation at minor allele frequencies as low as 0.1%, a large increase in the number of SNPs tested in association studies and can help to discover and refine causal loci. We describe remote server resources that allow researchers to carry out imputation and phasing consistently and efficiently.
We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 × 10−11) was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA 137), a known regulator of neuronal development. Four other schizophrenia loci achieving genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 × 10−9), ANK3 (rs10994359, P = 2.5 × 10−8) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 × 10−9).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.