We consider the online traveling salesperson problem (TSP), where requests appear online over time on the real line and need to be visited by a server initially located at the origin. We distinguish between closed and open online TSP, depending on whether the server eventually needs to return to the origin or not. While online TSP on the line is a very natural online problem that was introduced more than two decades ago, no tight competitive analysis was known to date. We settle this problem by providing tight bounds on the competitive ratios for both the closed and the open variant of the problem. In particular, for closed online TSP, we provide a 1.64-competitive algorithm, thus matching a known lower bound. For open online TSP, we give a new upper bound as well as a matching lower bound that establish the remarkable competitive ratio of 2.04. Additionally, we consider the online D IAL -A-R IDE problem on the line, where each request needs to be transported to a specified destination. We provide an improved non-preemptive lower bound of 1.75 for this setting, as well as an improved preemptive algorithm with competitive ratio 2.41. Finally, we generalize known and give new complexity results for the underlying offline problems. In particular, we give an algorithm with running time O ( n 2 ) for closed offline TSP on the line with release dates and show that both variants of offline D IAL -A-R IDE on the line are NP-hard for any capacity c ≥ 2 of the server.
We consider the fundamental problem of exploring an undirected and initially unknown graph by an agent with little memory. The vertices of the graph are unlabeled, and the edges incident to a vertex have locally distinct labels. In this setting, it is known that Θ(log n) bits of memory are necessary and sufficient to explore any graph with at most n vertices. We show that this memory requirement can be decreased significantly by making a part of the memory distributable in the form of pebbles. A pebble is a device that can be dropped to mark a vertex and can be collected when the agent returns to the vertex. We show that for an agent O(log log n) distinguishable pebbles and bits of memory are sufficient to explore any bounded-degree graph with at most n vertices. We match this result with a lower bound exhibiting that for any agent with sub-logarithmic memory, Ω(log log n) distinguishable pebbles are necessary for exploration.
We study the problem of deterministically exploring an undirected and initially unknown graph with n vertices either by a single agent equipped with a set of pebbles, or by a set of collaborating agents. The vertices of the graph are unlabeled and cannot be distinguished by the agents, but the edges incident to a vertex have locally distinct labels. The graph is explored when all vertices have been visited by at least one agent. In this setting, it is known that for a single agent without pebbles Θ(log n) bits of memory are necessary and sufficient to explore any graph with at most n vertices. We are interested in how the memory requirement decreases as the agent may mark vertices by dropping and retrieving distinguishable pebbles, or when multiple agents jointly explore the graph. We give tight results for both questions showing that for a single agent with constant memory Θ(log log n) pebbles are necessary and sufficient for exploration. We further prove that using collaborating agents instead of pebbles does not help as Θ(log log n) agents with constant bits of memory each are necessary and sufficient for exploration.For the upper bounds, we devise an algorithm for a single agent with constant memory that explores any n-vertex graph using O(log log n) pebbles, even when n is not known a priori. The algorithm terminates after polynomial time and returns to the starting vertex. Since an additional agent is at least as powerful as a pebble, this implies that O(log log n) agents with constant memory can explore any n-vertex graph. For the lower bound, we show that the number of agents needed for exploring any graph with at most n vertices is already Ω(log log n) when we allow each agent to have at most O(log n 1−ε ) bits of memory for any ε > 0. This also implies that a single agent with sublogarithmic memory needs Θ(log log n) pebbles to explore any n-vertex graph.
We consider the online traveling salesperson problem (TSP), where requests appear online over time on the real line and need to be visited by a server initially located at the origin. We distinguish between closed and open online TSP, depending on whether the server eventually needs to return to the origin or not. While online TSP on the line is a very natural online problem that was introduced more than two decades ago, no tight competitive analysis was known to date. We settle this problem by providing tight bounds on the competitive ratios for both the closed and the open variant of the problem. In particular, for closed online TSP, we provide a 1.64-competitive algorithm, thus matching a known lower bound. For open online TSP, we give a new upper bound as well as a matching lower bound that establish the remarkable competitive ratio of 2.04.Additionally, we consider the online Dial-A-Ride problem on the line, where each request needs to be transported to a specified destination. We provide an improved non-preemptive lower bound of 1.75 for this setting, as well as an improved preemptive algorithm with competitive ratio 2.41.Finally, we generalize known and give new complexity results for the underlying offline problems. In particular, we give an algorithm with running
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.