Epidemiological studies relating a particular exposure to a specified disease may present their results in a variety of ways. Often, results are presented as estimated odds ratios (or relative risks) and confidence intervals (CIs) for a number of categories of exposure, for example, by duration or level of exposure, compared with a single reference category, often the unexposed. For systematic literature review, and particularly meta-analysis, estimates for an alternative comparison of the categories, such as any exposure versus none, may be required. Obtaining these alternative comparisons is not straightforward, as the initial set of estimates is correlated. This paper describes a method for estimating these alternative comparisons based on the ideas originally put forward by Greenland and Longnecker, and provides implementations of the method, developed using Microsoft Excel and SAS. Examples of the method based on studies of smoking and cancer are given. The method also deals with results given by categories of disease (such as histological types of a cancer). The method allows the use of a more consistent comparison when summarizing published evidence, thus potentially improving the reliability of a meta-analysis.
BackgroundInterest is rising in smokeless tobacco as a safer alternative to smoking, but published reviews on smokeless tobacco and cancer are limited. We review North American and European studies and compare effects of smokeless tobacco and smoking.MethodsWe obtained papers from MEDLINE searches, published reviews and secondary references describing epidemiological cohort and case-control studies relating any form of cancer to smokeless tobacco use. For each study, details were abstracted on design, smokeless tobacco exposure, cancers studied, analysis methods and adjustment for smoking and other factors. For each cancer, relative risks or odds ratios with 95% confidence intervals were tabulated. Overall, and also for USA and Scandinavia separately, meta-analyses were conducted using all available estimates, smoking-adjusted estimates, or estimates for never smokers. For seven cancers, smoking-attributable deaths in US men in 2005 were compared with deaths attributable to introducing smokeless tobacco into a population of never-smoking men.ResultsEighty-nine studies were identified; 62 US and 18 Scandinavian. Forty-six (52%) controlled for smoking. Random-effects meta-analysis estimates for most sites showed little association. Smoking-adjusted estimates were only significant for oropharyngeal cancer (1.36, CI 1.04–1.77, n = 19) and prostate cancer (1.29, 1.07–1.55, n = 4). The oropharyngeal association disappeared for estimates published since 1990 (1.00, 0.83–1.20, n = 14), for Scandinavia (0.97, 0.68–1.37, n = 7), and for alcohol-adjusted estimates (1.07, 0.84–1.37, n = 10). Any effect of current US products or Scandinavian snuff seems very limited. The prostate cancer data are inadequate for a clear conclusion.Some meta-analyses suggest a possible effect for oesophagus, pancreas, larynx and kidney cancer, but other cancers show no effect of smokeless tobacco. Any possible effects are not evident in Scandinavia. Of 142,205 smoking-related male US cancer deaths in 2005, 104,737 are smoking-attributable. Smokeless tobacco-attributable deaths would be 1,102 (1.1%) if as many used smokeless tobacco as had smoked, and 2,081 (2.0%) if everyone used smokeless tobacco.ConclusionAn increased risk of oropharyngeal cancer is evident most clearly for past smokeless tobacco use in the USA, but not for Scandinavian snuff. Effects of smokeless tobacco use on other cancers are not clearly demonstrated. Risk from modern products is much less than for smoking.
No abstract
Context: In 2006, we reviewed the evidence on environmental tobacco smoke (ETS) and breast cancer in nonsmoking women. Since then various studies and reviews have been published but opinion remains divided. Objective: To provide an updated review. Methods: We extracted study details, derived relative risk (RR) estimates with confidence intervals (CIs) for various ETS exposure indices, and conducted meta-analyses. Results: The update increased the number of studies from 22 to 47. Using an index for each study most closely equivalent to “spouse ever smoked”, a weak but significant association was seen (random-effects RR = 1.15, 95% CI = 1.07–1.23). However, the estimates were heterogeneous: higher for Asian studies than for North American or European studies, higher for studies adjusting for fewer potential confounding variables, and close to 1.0 for prospective studies, regardless of whether or not they asked detailed questions on ETS exposure. The RR for eight prospective studies asking detailed questions was 1.003, 95% CI = 0.96–1.05. Risk was increased in premenopausal women (RR = 1.36, 95% CI = 1.15–1.60), but not postmenopausal women. Dose–response findings were similarly heterogeneous. No significant increase was seen for childhood or workplace exposure, but an increase was seen for total exposure (RR = 1.22, 95% CI = 1.09–1.37). Conclusions: Increases mainly derived from case-control studies are prone to recall bias. Study weaknesses and possible publication bias limit interpretation. Considering also the weak association of smoking with breast cancer, and the much lower exposures from ETS than from smoking, our analyses do not clearly demonstrate that ETS exposure increases risk of breast cancer in nonsmokers. More research is needed.
BackgroundReduced FEV1 is known to predict increased lung cancer risk, but previous reviews are limited. To quantify this relationship more precisely, and study heterogeneity, we derived estimates of β for the relationship RR(diff) = exp(βdiff), where diff is the reduction in FEV1 expressed as a percentage of predicted (FEV1%P) and RR(diff) the associated relative risk. We used results reported directly as β, and as grouped levels of RR in terms of FEV1%P and of associated measures (e.g. FEV1/FVC).MethodsPapers describing cohort studies involving at least three years follow-up which recorded FEV1 at baseline and presented results relating lung cancer to FEV1 or associated measures were sought from Medline and other sources. Data were recorded on study design and quality and, for each data block identified, on details of the results, including population characteristics, adjustment factors, lung function measure, and analysis type. Regression estimates were converted to β estimates where appropriate. For results reported by grouped levels, we used the NHANES III dataset to estimate mean FEV1%P values for each level, regardless of the measure used, then derived β using regression analysis which accounted for non-independence of the RR estimates. Goodness-of-fit was tested by comparing observed and predicted lung cancer cases for each level. Inverse-variance weighted meta-analysis allowed derivation of overall β estimates and testing for heterogeneity by factors including sex, age, location, timing, duration, study quality, smoking adjustment, measure of FEV1 reported, and inverse-variance weight of β.ResultsThirty-three publications satisfying the inclusion/exclusion criteria were identified, seven being rejected as not allowing estimation of β. The remaining 26 described 22 distinct studies, from which 32 independent β estimates were derived. Goodness-of-fit was satisfactory, and exp(β), the RR increase per one unit FEV1%P decrease, was estimated as 1.019 (95%CI 1.016-1.021). The estimates were quite consistent (I2 =29.6%). Mean age was the only independent source of heterogeneity, exp(β) being higher for age <50 years (1.024, 1.020-1.028).ConclusionsAlthough the source papers present results in various ways, complicating meta-analysis, they are very consistent. A decrease in FEV1%P of 10% is associated with a 20% (95%CI 17%-23%) increase in lung cancer risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.