New hippocampal neurons are continuously generated in the adult brain. Here, we demonstrate that lipopolysaccharide-induced inflammation, which gives rise to microglia activation in the area where the new neurons are born, strongly impairs basal hippocampal neurogenesis in rats. The increased neurogenesis triggered by a brain insult is also attenuated if it is associated with microglia activation caused by tissue damage or lipopolysaccharide infusion. The impaired neurogenesis in inflammation is restored by systemic administration of minocycline, which inhibits microglia activation. Our data raise the possibility that suppression of hippocampal neurogenesis by activated microglia contributes to cognitive dysfunction in aging, dementia, epilepsy, and other conditions leading to brain inflammation. In the adult mammalian brain, neural progenitor cells located in the subgranular zone (SGZ) of the dentate gyrus (DG) generate thousands of new neurons each day (1). These neurons develop the morphological and functional properties of dentate granule cells and become integrated into existing neuronal circuitries (2). The role of neurogenesis for hippocampal function is still unclear, but some experimental evidence suggests its involvement in memory formation (3) and mood regulation (4). Impairment of hippocampal neurogenesis may be linked to the cognitive decline in aging, Alzheimer's disease (AD), and major depression (5-7).Brain inflammation probably plays an important role in the pathogenesis of chronic neurodegenerative disorders like AD and ParkinsonЈs disease (8, 9). Neurodegeneration caused by inflammation involves activation of the brain's resident immune cells, the microglia, which produce a large number of proinflammatory factors (10-12). Also, acute brain insults, e.g., stroke and status epilepticus (SE), are linked to inflammation (13,14), which contributes to the propagation of the neuropathological events (9, 15). These insults trigger increased neurogenesis in the SGZ (16)(17)(18)(19). After severe SE, there is an 80% loss of newly formed dentate neurons (20), which raises the possibility that the associated inflammatory response is deleterious for hippocampal neurogenesis.Here, we show that the microglia activation associated with inflammation impairs both basal and insult-induced hippocampal neurogenesis. We find that systemic administration of the tetracycline derivative minocycline, which specifically inhibits microglia activation, is an effective treatment to restore neurogenesis suppressed by inflammation. Materials and MethodsSurgery and Induction of SE. Male Sprague-Dawley rats were implanted with a stimulating͞recording electrode into the right ventral hippocampus [coordinates: 4.8 mm caudal and 5.2 mm lateral to bregma, 6.3 mm ventral to dura, and toothbar at Ϫ3.3 mm (21)] under pentobarbital or halothane anesthesia. In 37 animals, a brain infusion cannula (Alzet, Palo Alto, CA) was also placed intracortically on the right side of the brain (2 mm caudal and 1.2 mm lateral to bregma and 2.6 mm ve...
In vitro assays are valuable tools to study the characteristics of adult neural precursor cells under controlled conditions with a defined set of parameters. We here present a detailed protocol based on our previous original publication (Babu et al., 2007) to isolate neural precursor cells from the hippocampus of adult mice and maintain and propagate them as adherent monolayer cultures. The strategy is based on the use of Percoll density gradient centrifugation to enrich precursor cells from the micro-dissected dentate gyrus. Based on the expression of Nestin and Sox2, a culture-purity of more than 98% can be achieved. The cultures are expanded under serum-free conditions in Neurobasal A medium with addition of the mitogens Epidermal growth factor and Fibroblast growth factor 2 as well as the supplements Glutamax-1 and B27. Under differentiation conditions, the precursor cells reliably generate approximately 30% neurons with appropriate morphological, molecular, and electrophysiological characteristics that might reflect granule cell properties as their in vivo counterpart. We also highlight potential modifications to the protocol.
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by a selective loss of dopaminergic neurons in the substantia nigra (SN). It has been suggested that microglial inflammation augments the progression of PD. Neuromelanin (NM), a complex polymer pigment found in catecholaminergic neurons, has sparked interest because of the suggestion that NM is involved in cell death in Parkinson's disease, possibly via microglia activation. To further investigate the possible role of NM in the pathogenesis of PD, we conducted in vivo experiments to find out whether microglial cells become activated after injection of human neuromelanin (NM) into (1) the cerebral cortex or (2) the substantia nigra to monitor in this PD-relevant model both microglial activation and possible neurodegeneration. In this study, adult male Wistar rats received an intracerebral injection of either NM, bacterial lipopolysaccharide (LPS, positive control), phosphate-buffered saline (PBS, negative control) or colloidal gold suspension (negative particular control). After different survival times (1, 8 or 12 weeks), brain slices from the cerebral cortex or substantia nigra (SN, 1 week) were stained with Iba-1 and/or GFAP antibody to monitor microglial and astrocytic reaction, and with tyrosine hydroxylase (TH) to monitor dopaminergic cell survival (SN group only). The injection of LPS induced a strong inflammatory response in the cortex as well in the substantia nigra. Similar results could be obtained after NM injection, while the injection of PBS or gold suspension showed only moderate or no glial activation. However, the inflammatory response declined during the time course. In the SN group, there was, apart from strong microglia activation, a significant dopaminergic cell loss after 1 week of survival time. Our findings clearly indicate that extracellular NM could be one of the key molecules leading to microglial activation and neuronal cell death in the substantia nigra. This may be highly relevant to the elucidation of therapeutic strategies in PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.