Motivation: Imaging mass spectrometry (IMS) is one of the few measurement technology s of biochemistry which, given a thin sample, is able to reveal its spatial chemical composition in the full molecular range. IMS produces a hyperspectral image, where for each pixel a high-dimensional mass spectrum is measured. Currently, the technology is mature enough and one of the major problems preventing its spreading is the under-development of computational methods for mining huge IMS datasets. This article proposes a novel approach for spatial segmentation of an IMS dataset, which is constructed considering the important issue of pixel-to-pixel variability.Methods: We segment pixels by clustering their mass spectra. Importantly, we incorporate spatial relations between pixels into clustering, so that pixels are clustered together with their neighbors. We propose two methods. One is non-adaptive, where pixel neighborhoods are selected in the same manner for all pixels. The second one respects the structure observable in the data. For a pixel, its neighborhood is defined taking into account similarity of its spectrum to the spectra of adjacent pixels. Both methods have the linear complexity and require linear memory space (in the number of spectra).Results: The proposed segmentation methods are evaluated on two IMS datasets: a rat brain section and a section of a neuroendocrine tumor. They discover anatomical structure, discriminate the tumor region and highlight functionally similar regions. Moreover, our methods provide segmentation maps of similar or better quality if compared to the other state-of-the-art methods, but outperform them in runtime and/or required memory.Contact: theodore@math.uni-bremen.de
Three-dimensional (3D) imaging has a significant impact on many challenges of life sciences. Three-dimensional matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) is an emerging label-free bioanalytical technique capturing the spatial distribution of hundreds of molecular compounds in 3D by providing a MALDI mass spectrum for each spatial point of a 3D sample. Currently, 3D MALDI-IMS cannot tap its full potential due to the lack efficient computational methods for constructing, processing, and visualizing large and complex 3D MALDI-IMS data. We present a new pipeline of efficient computational methods, which enables analysis and interpretation of a 3D MALDI-IMS data set. Construction of a MALDI-IMS data set was done according to the state-of-the-art protocols and involved sample preparation, spectra acquisition, spectra preprocessing, and registration of serial sections. For analysis and interpretation of 3D MALDI-IMS data, we applied the spatial segmentation approach which is well-accepted in analysis of two-dimensional (2D) MALDI-IMS data. In line with 2D data analysis, we used edge-preserving 3D image denoising prior to segmentation to reduce strong and chaotic spectrum-to-spectrum variation. For segmentation, we used an efficient clustering method, called bisecting k-means, which is optimized for hierarchical clustering of a large 3D MALDI-IMS data set. Using the proposed pipeline, we analyzed a central part of a mouse kidney using 33 serial sections of 3.5 μm thickness after the PAXgene tissue fixation and paraffin embedding. For each serial section, a 2D MALDI-IMS data set was acquired following the standard protocols with the high spatial resolution of 50 μm. Altogether, 512 495 mass spectra were acquired that corresponds to approximately 50 gigabytes of data. After registration of serial sections into a 3D data set, our computational pipeline allowed us to reveal the 3D kidney anatomical structure based on mass spectrometry data only. Finally, automated analysis discovered molecular masses colocalized with major anatomical regions. In the same way, the proposed pipeline can be used for analysis and interpretation of any 3D MALDI-IMS data set in particular of pathological cases.
BackgroundThree-dimensional (3D) imaging mass spectrometry (MS) is an analytical chemistry technique for the 3D molecular analysis of a tissue specimen, entire organ, or microbial colonies on an agar plate. 3D-imaging MS has unique advantages over existing 3D imaging techniques, offers novel perspectives for understanding the spatial organization of biological processes, and has growing potential to be introduced into routine use in both biology and medicine. Owing to the sheer quantity of data generated, the visualization, analysis, and interpretation of 3D imaging MS data remain a significant challenge. Bioinformatics research in this field is hampered by the lack of publicly available benchmark datasets needed to evaluate and compare algorithms.FindingsHigh-quality 3D imaging MS datasets from different biological systems at several labs were acquired, supplied with overview images and scripts demonstrating how to read them, and deposited into MetaboLights, an open repository for metabolomics data. 3D imaging MS data were collected from five samples using two types of 3D imaging MS. 3D matrix-assisted laser desorption/ionization imaging (MALDI) MS data were collected from murine pancreas, murine kidney, human oral squamous cell carcinoma, and interacting microbial colonies cultured in Petri dishes. 3D desorption electrospray ionization (DESI) imaging MS data were collected from a human colorectal adenocarcinoma.ConclusionsWith the aim to stimulate computational research in the field of computational 3D imaging MS, selected high-quality 3D imaging MS datasets are provided that could be used by algorithm developers as benchmark datasets.Electronic supplementary materialThe online version of this article (doi:10.1186/s13742-015-0059-4) contains supplementary material, which is available to authorized users.
Lung cancer is the leading cause of cancer related death worldwide among both, men and woman with about 1.59 million reported deaths in 2012 (1). Two major lung cancer categories are discerned, namely small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) 1 , with the latter comprising ϳ85% of all cases. The two predominant histological NSCLC entities are adenocarcinoma (ADC) and squamous cell carcinoma (SqCC) accounting for ϳ50 and 40% of all lung cancers, respectively (2).Because differentiation of NSCLC subtypes is crucial for the selection of chemotherapy regimens and subsequent molecular test strategies, precise subtyping is paramount. Therapeutic targets such as ALK translocations or activating mutations of the epidermal growth factor receptor (EGFR) have been found almost exclusively in ADC and these patients benefit from the respective molecularly tar-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.