Currently, many different methods are being used for pre-processing, statistical analysis and validation of data obtained by electronic nose technology from exhaled air. These various methods, however, have never been thoroughly compared. We aimed to empirically evaluate and compare the influence of different dimension reduction, classification and validation methods found in published studies on the diagnostic performance in several datasets. Our objective was to facilitate the selection of appropriate statistical methods and to support reviewers in this research area. We reviewed the literature by searching Pubmed up to the end of 2014 for all human studies using an electronic nose and methodological quality was assessed using the QUADAS-2 tool tailored to our review. Forty-six studies were evaluated regarding the range of different approaches to dimension reduction, classification and validation. From forty-six reviewed articles only seven applied external validation in an independent dataset, mostly with a case-control design. We asked their authors to share the original datasets with us. Four of the seven datasets were available for re-analysis. Published statistical methods for eNose signal analysis found in the literature review were applied to the training set of each dataset. The performance (area under the receiver operating characteristics curve (ROC-AUC)) was calculated for the training cohort (in-set) and after internal validation (leave-one-out cross validation). The methods were also applied to the external validation set to assess the external validity of the performance. Risk of bias was high in most studies due to non-random selection of patients. Internal validation resulted in a decrease in ROC-AUCs compared to in-set performance: -0.15,-0.14,-0.1,-0.11 in dataset 1 through 4, respectively. External validation resulted in lower ROC-AUC compared to internal validation in dataset 1 (-0.23) and 3 (-0.09). ROC-AUCs did not decrease in dataset 2 (+0.07) and 4 (+0.04). No single combination of dimension reduction and classification methods gave consistent results between internal and external validation sets in this sample of four datasets. This empirical evaluation showed that it is not meaningful to estimate the diagnostic performance on a training set alone, even after internal validation. Therefore, we recommend the inclusion of an external validation set in all future eNose projects in medicine.
IntroductionThere is a need for continuous glucose monitoring in critically ill patients. The objective of this trial was to determine the point accuracy and reliability of a device designed for continuous monitoring of interstitial glucose levels in intensive care unit patients.MethodsWe evaluated point accuracy by comparing device readings with glucose measurements in arterial blood by using blood gas analyzers. Analytical and clinical accuracy was expressed in Bland-Altman plots, glucose prediction errors, and Clarke error grids. We used a linear mixed model to determine which factors affect the point accuracy. In addition, we determined the reliability, including duration of device start-up and calibration, skips in data acquisition, and premature disconnections of sensors.ResultsWe included 50 patients in whom we used 105 sensors. Five patients from whom we could not collect the predefined minimum number of four consecutive comparative blood draws were excluded from the point accuracy analysis. Therefore, we had 929 comparative samples from 100 sensors in 45 patients (11 (7 to 28) samples per patient) during 4,639 hours (46 (27 to 134) hours per patient and 46 (21 to 69) hours per sensor) for the accuracy analysis. Point accuracy did not meet the International Organization for Standardization (ISO) 14971 standard for insulin dosing accuracy but did improve with increasing numbers of calibrations and was better in patients who did not have a history of diabetes. Out of 105 sensors, 60 were removed prematurely for a variety of reasons. The device start-up time was 49 (43 to 58) minutes. The number of skips in data acquisition was low, resulting in availability of real-time data during 95% (89% to 98%) of the connection time per sensor.ConclusionsThe point accuracy of a device designed for continuous real-time monitoring of interstitial glucose levels was relatively low in critically ill patients. The device had few downtimes, but one third of the sensors were removed prematurely because of unresolved sensor- or device-related problems.Trial registrationNetherlands Trial Registry number: NTR3827. Registered 30 January 2013.Electronic supplementary materialThe online version of this article (doi:10.1186/s13054-015-0757-4) contains supplementary material, which is available to authorized users.
BackgroundMicrodialysis is a well-established technology that can be used for continuous blood glucose monitoring. We determined point and trend accuracy, and reliability of a microdialysis-based continuous blood glucose-monitoring device (EIRUS®) in critically ill patients.MethodsProspective study involving patients with an expected intensive care unit stay of ≥48 h. Every 15 min, device readings were compared with blood glucose values measured in arterial blood during blocks of 8 h per day for a maximum of 3 days. The Clarke error grid, Bland–Altman plot, mean absolute relative difference and glucose prediction error analysis were used to express point accuracy and the rate error grid to express trend accuracy. Reliability testing included aspects of the device and the external sensor, and the special central venous catheter (CVC) with a semipermeable membrane for use with this device.ResultsWe collected 594 paired values in 12 patients (65 [26–80; 8–97] (median [IQR; total range]) paired values per patient). Point accuracy: 93.6 % of paired values were in zone A of the Clarke error grid, 6.4 % were in zone B; bias was 4.1 mg/dL with an upper limit of agreement of 28.6 mg/dL and a lower level of agreement of −20.5 mg/dL in the Bland–Altman analysis; 93.6 % of the values ≥75 mg/dL were within 20 % of the reference values in the glucose prediction error analysis; the mean absolute relative difference was 7.5 %. Trend accuracy: 96.4 % of the paired values were in zone A, and 3.3 and 0.3 % were in zone B and zone C of the rate error grid. Reliability: out of 16 sensors, 4 had to be replaced prematurely; out of 12 CVCs, two malfunctioned (one after unintentional flushing by unsupervised nurses of the ports connected to the internal microdialysis chamber, causing rupture of the semipermeable membrane; one for an unknown reason). Device start-up time was 58 [56–67] min; availability of real-time data was 100 % of the connection time.ConclusionsIn this study in critically ill patients who had no hypoglycemic episodes and a limited number of hyperglycemic excursions, point accuracy of the device was moderate to good. Trend accuracy was very good. The device had no downtimes, but 4 out of 16 external sensors and 2 out of 12 CVCs had practical problems.Electronic supplementary materialThe online version of this article (doi:10.1186/s13613-016-0171-3) contains supplementary material, which is available to authorized users.
BackgroundIn critically ill patients, glucose control with insulin mandates time– and blood–consuming glucose monitoring. Blood glucose level fluctuations are accompanied by metabolomic changes that alter the composition of volatile organic compounds (VOC), which are detectable in exhaled breath. This review systematically summarizes the available data on the ability of changes in VOC composition to predict blood glucose levels and changes in blood glucose levels.MethodsA systematic search was performed in PubMed. Studies were included when an association between blood glucose levels and VOCs in exhaled air was investigated, using a technique that allows for separation, quantification and identification of individual VOCs. Only studies on humans were included.ResultsNine studies were included out of 1041 identified in the search. Authors of seven studies observed a significant correlation between blood glucose levels and selected VOCs in exhaled air. Authors of two studies did not observe a strong correlation. Blood glucose levels were associated with the following VOCs: ketone bodies (e.g., acetone), VOCs produced by gut flora (e.g., ethanol, methanol, and propane), exogenous compounds (e.g., ethyl benzene, o–xylene, and m/p–xylene) and markers of oxidative stress (e.g., methyl nitrate, 2–pentyl nitrate, and CO).ConclusionThere is a relation between blood glucose levels and VOC composition in exhaled air. These results warrant clinical validation of exhaled breath analysis to monitor blood glucose levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.