Introduction
There are few published empirical data on the effects of COVID‐19 on mental health, and until now, there is no large international study.
Material and methods
During the COVID-19 pandemic, an online questionnaire gathered data from 55,589 participants from 40 countries (64.85% females aged 35.80 ± 13.61; 34.05% males aged 34.90±13.29 and 1.10% other aged 31.64±13.15). Distress and probable depression were identified with the use of a previously developed cut-off and algorithm respectively.
Statistical analysis
Descriptive statistics were calculated. Chi-square tests, multiple forward stepwise linear regression analyses and Factorial Analysis of Variance (ANOVA) tested relations among variables.
Results
Probable depression was detected in 17.80% and distress in 16.71%. A significant percentage reported a deterioration in mental state, family dynamics and everyday lifestyle. Persons with a history of mental disorders had higher rates of current depression (31.82% vs. 13.07%). At least half of participants were accepting (at least to a moderate degree) a non-bizarre conspiracy. The highest Relative Risk (RR) to develop depression was associated with history of Bipolar disorder and self-harm/attempts (RR = 5.88). Suicidality was not increased in persons without a history of any mental disorder. Based on these results a model was developed.
Conclusions
The final model revealed multiple vulnerabilities and an interplay leading from simple anxiety to probable depression and suicidality through distress. This could be of practical utility since many of these factors are modifiable. Future research and interventions should specifically focus on them.
IntroductionA specific clinically relevant staging model for schizophrenia has not yet been developed. The aim of the current study was to evaluate the factor structure of the PANSS and develop such a staging method.MethodsTwenty-nine centers from 25 countries contributed 2358 patients aged 37.21 ± 11.87 years with schizophrenia. Analysis of covariance, Exploratory Factor Analysis, Discriminant Function Analysis, and inspection of resultant plots were performed.ResultsExploratory Factor Analysis returned 5 factors explaining 59% of the variance (positive, negative, excitement/hostility, depression/anxiety, and neurocognition). The staging model included 4 main stages with substages that were predominantly characterized by a single domain of symptoms (stage 1: positive; stages 2a and 2b: excitement/hostility; stage 3a and 3b: depression/anxiety; stage 4a and 4b: neurocognition). There were no differences between sexes. The Discriminant Function Analysis developed an algorithm that correctly classified >85% of patients.DiscussionThis study elaborates a 5-factor solution and a clinical staging method for patients with schizophrenia. It is the largest study to address these issues among patients who are more likely to remain affiliated with mental health services for prolonged periods of time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.