Constitutional dynamic libraries (CDLs) of hydrazones, acylhydrazones, and imines undergo reorganization and adaptation in response to chemical effectors (herein metal cations) via component exchange and selection. Such CDLs can be subjected to training by exposition to given effectors and keep memory of the information stored by interaction with a specific metal ion. The long-term storage of the acquired information into the set of constituents of the system allows for fast recognition on subsequent contacts with the same effector(s). Dynamic networks of constituents were designed to adapt orthogonally to different metal cations by up- and down-regulation of specific constituents in the final distribution. The memory may be erased by component exchange between the constituents so as to regenerate the initial (statistical) distribution. The libraries described represent constitutional dynamic systems capable of acting as information storage molecular devices, in which the presence of components linked by reversible covalent bonds in slow exchange and bearing adequate coordination sites allows for the adaptation to different metal ions by constitutional variation. The system thus performs information storage, recall, and erase processes.
Ligands with geminal bis(phosphonic acid) appended to 1,4,7-triazacyclonone-1,4-diacetic acid fragment through acetamide (NOTAM(BP) ) or methylenephosphinate (NO2AP(BP) ) spacers designed for (68) Ga were prepared. Ga(III) complexation is much faster for ligand with methylenephosphinate spacer than that with acetamide one, in both chemical (high reactant concentrations) and radiolabeling studies with no-carrier-added (68) Ga. For both ligands, formation of Ga(III) complex was slower than that with NOTA owing to the strong out-of-cage binding of bis(phosphonate) group. Radiolabeling was efficient and fast only above 60 °C and in a narrow acidity region (pH ~3). At higher temperature, hydrolysis of amide bond of the carboxamide-bis(phosphonate) conjugate was observed during complexation reaction leading to Ga-NOTA complex. In vitro sorption studies confirmed effective binding of the (68) Ga complexes to hydroxyapatite being comparable with that found for common bis(phosphonate) drugs such as pamindronate. Selective bone uptake was confirmed in healthy rats by biodistribution studies ex vivo and by positron emission tomography imaging in vivo. Bone uptake was very high, with SUV (standardized uptake value) of 6.19 ± 1.27 for [(68) Ga]NO2AP(BP) ) at 60 min p.i., which is superior to uptake of (68) Ga-DOTA-based bis(phosphonates) and [(18) F]NaF reported earlier (SUV of 4.63 ± 0.38 and SUV of 4.87 ± 0.32 for [(68) Ga]DO3AP(BP) and [(18) F]NaF, respectively, at 60 min p.i.). Coincidently, accumulation in soft tissue is generally low (e.g. for kidneys SUV of 0.26 ± 0.09 for [(68) Ga]NO2AP(BP) at 60 min p.i.), revealing the new (68) Ga complexes as ideal tracers for noninvasive, fast and quantitative imaging of calcified tissue and for metastatic lesions using PET or PET/CT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.