We compared (i) nitrous oxide (N 2 O) fluxes from a 9-month field experiment established on a temperate, newly sown, intensively managed meadow using automated chambers with fine time resolution, and (ii) fluxes measured at several occasions throughout the experiment under controlled laboratory conditions. Twenty tonnes dry matter ha −1 greenwaste biochar were added to three plots and compared with three control plots. Cumulated N 2 O field measurements revealed a reduction of 21.5% in the plots with biochar. The reductions for samples where the biochar was added at the beginning of the experiment in the field and samples which were collected each month and measured in the laboratory were in the same range (11.4-39.2%). Emission reductions from laboratory incubations when biochar was freshly mixed with soil in the laboratory were about twice as large (46.5-58.0%). Our results indicate provisionally that, at our site, biochar controls N 2 O emission through its capacity for reducing NO 3 − availability to denitrifiers, with the efficiency being related to the effectiveness of mixing of biochar in soil.
During the last decade, biochar has captured the attention of agriculturalists worldwide due to its positive effect on the environment. To verify the biochar effects on organic carbon content, soil sorption, and soil physical properties under the mild climate of Central Europe, we established a field experiment. This was carried out on a silty loam Haplic Luvisol at the Malanta experimental site of the Slovak Agricultural University in Nitra with five treatments: Control (biochar 0 t ha−1, nitrogen 0 kg ha−1); B10 (biochar 10 t ha−1, nitrogen 0 kg ha−1); B20 (biochar 20 t ha−1, nitrogen 0 kg ha−1); B10+N (biochar 10 t ha−1, nitrogen 160 kg ha−1) and B20+N (biochar 20 t ha−1, nitrogen 160 kg ha−1). Applied biochar increased total and available soil water content in all fertilized treatments. Based on the results from the spring soil sampling (porosity and water retention curves), we found a statistically significant increase in the soil water content for all fertilized treatments. Furthermore, biochar (with or without N fertilization) significantly decreased hydrolytic acidity and increased total organic carbon. After biochar amendment, the soil sorption complex became fully saturated mainly by the basic cations. Statistically significant linear relationships were observed between the porosity and (A) sum of base cations, (B) cation exchange capacity, (C) base saturation.
Due to climate change the productive agricultural sectors have started to face various challenges, such as soil drought. Biochar is studied as a promising soil amendment. We studied the effect of a former biochar application (in 2014) and re-application (in 2018) on bulk density, porosity, saturated hydraulic conductivity, soil water content and selected soil water constants at the experimental site in Dolná Malanta (Slovakia) in 2019. Biochar was applied and re-applied at the rates of 0, 10 and 20 t ha−1. Nitrogen fertilizer was applied annually at application levels N0, N1 and N2. In 2019, these levels were represented by the doses of 0, 108 and 162 kg N ha−1, respectively. We found that biochar applied at 20 t ha−1 without fertilizer significantly reduced bulk density by 12% and increased porosity by 12%. During the dry period, a relative increase in soil water content was observed at all biochar treatments—the largest after re-application of biochar at a dose of 20 t ha−1 at all fertilization levels. The biochar application also significantly increased plant available water. We suppose that change in the soil structure following a biochar amendment was one of the main reasons of our observations.
The paper presents the comparison of soil particle size distribution determined by standard pipette method and laser diffraction. Based on the obtained results (542 soil samples from 271 sites located in the Nitra, Váh and Hron River basins), regression models were calculated to convert the results of the particle size distribution by laser diffraction to pipette method. Considering one of the most common soil texture classification systems used in Slovakia (according to Novák), the emphasis was placed on the determination accuracy of particle size fraction <0.01 mm. Analysette22 MicroTec plus and Mastersizer2000 devices were used for laser diffraction. Polynomial regression model resulted in the best approximation of measurements by laser diffraction to values obtained by pipette method. In the case of particle size fraction <0.01 mm, the differences between the measured values by pipette method and both laser analyzers ranged in average from 3% up to 9% and from 2% up to 11% in the case of Analysette22 and Mastersizer2000, respectively. After correction, the differences decreased to average 3.28% (Analysette22) and 2.24% (Mastersizer2000) in comparison with pipette method. After recalculation of the data, laser diffraction can be used alongside the sedimentation methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.