We propose steady-state electron transport based on coherent transfer by adiabatic passage (CTAP) in a linearly arranged triple quantum dot with leads attached to the outer dots. Its main feature is repeated steering of single electrons from the first dot to the last dot without relevant occupation of the middle dot. The coupling to leads enables a steady-state current, whose shot noise is significantly suppressed provided that the CTAP protocol performs properly. This represents an indication for the direct transfer between spatially separated dots and, thus, may resolve the problem of finding experimental evidence for the nonoccupation of the middle dot.
We present a theoretical analysis of femtosecond pump-probe experiments performed on a single negatively charged quantum dot. The influence of Coulomb-correlation effects as well as carrier relaxation on transient transmission change signals is investigated. Our model describes ultrafast disappearance of the fundamental trion absorption due to instantaneous Coulomb renormalizations and a delayed onset of gain at the same frequency, as found in the measurements. Going beyond previous experimental information, we predict that after spinconserving carrier relaxation, new optical transitions exhibiting either gain or absorption should emerge that build up on a picosecond timescale. The time dependence of these new transitions provides insight into details of the carrier relaxation processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.