Single photons and entangled photon pairs are a key resource of many quantum secure communication and quantum computation protocols, and non-Poissonian sources emitting in the low-loss wavelength region around 1,550 nm are essential for the development of fibre-based quantum network infrastructure. However, reaching this wavelength window has been challenging for semiconductor-based quantum light sources. Here we show that quantum dot devices based on indium phosphide are capable of electrically injected single photon emission in this wavelength region. Using the biexciton cascade mechanism, they also produce entangled photons with a fidelity of 87 ± 4%, sufficient for the application of one-way error correction protocols. The material system further allows for entangled photon generation up to an operating temperature of 93 K. Our quantum photon source can be directly integrated with existing long distance quantum communication and cryptography systems, and provides a promising material platform for developing future quantum network hardware.
Abstract. The emission and absorption of single photons by single atomic particles is a fundamental limit of matter-light interaction, manifesting its quantum mechanical nature. At the same time, as a controlled process it is a key enabling tool for quantum technologies, such as quantum optical information technology [1,2] and quantum metrology [3,4,5,6]. Controlling both emission and absorption will allow implementing quantum networking scenarios [1,7,8,9], where photonic communication of quantum information is interfaced with its local processing in atoms. In studies of single-photon emission, recent progress includes control of the shape, bandwidth, frequency, and polarization of single-photon sources [10,11,12,13,14,15,16,17], and the demonstration of atom-photon entanglement [18,19,20]. Controlled absorption of a single photon by a single atom is much less investigated; proposals exist but only very preliminary steps have been taken experimentally such as detecting the attenuation and phase shift of a weak laser beam by a single atom [21,22], and designing an optical system that covers a large fraction of the full solid angle [23,24,25]. Here we report the interaction of single heralded photons with a single trapped atom. We find strong correlations of the detection of a heralding photon with a change in the quantum state of the atom marking absorption of the quantum-correlated heralded photon. In coupling a single absorber with a quantum light source, our experiment demonstrates previously unexplored matter-light interaction, while opening up new avenues towards photon-atom entanglement conversion in quantum technology.
Although many properties of polyatomic metal clusters have been rationalized by an electron shell model resembling that used for free atoms, it remained unclear how reliable this analogy is with respect to the angular momentum eigenstate character of the electronic wave functions. We studied free size-selected negatively charged clusters of sodium atoms (Nan-) of approximately spherical shape (n = 19, 40, 55, 58, 147) by angle-resolved photoelectron spectroscopy over a broad range of photon energies (1.5 to 5 electron volts). Highly anisotropic, state- and energy-dependent angular distributions emerged for all sizes. Well-defined classes of energy dependence related to the approximate angular momenta of the bound-state orbitals indicate that the overall character of the valence electron wave functions is not appreciably influenced by the interaction with the ion background. The measured distributions nevertheless deviate strongly from the predictions of single-electron models, hinting at a distinct role of correlated multielectron effects in the photoemission process.
Efficient sources of individual pairs of entangled photons are required for quantum networks to operate using fiber-optic infrastructure. Entangled light can be generated by quantum dots (QDs) with naturally small fine-structure splitting (FSS) between exciton eigenstates. Moreover, QDs can be engineered to emit at standard telecom wavelengths. To achieve sufficient signal intensity for applications, QDs have been incorporated into one-dimensional optical microcavities. However, combining these properties in a single device has so far proved elusive. Here, we introduce a growth strategy to realize QDs with small FSS in the conventional telecom band, and within an optical cavity. Our approach employs ''droplet-epitaxy'' of InAs quantum dots on (001) substrates. We show the scheme improves the symmetry of the dots by 72%. Furthermore, our technique is universal, and produces low FSS QDs by molecular beam epitaxy on GaAs emitting at ∼900 nm, and metal-organic vapor-phase epitaxy on InP emitting at ∼1550 nm, with mean FSS 4× smaller than for Stranski-Krastanow QDs.
A practical way to link separate nodes in quantum networks is to send photons over the standard telecom fibre network. This requires sub-Poissonian photon sources in the telecom wavelength band around 1550 nm, where the photon coherence time has to be sufficient to enable the many interference-based technologies at the heart of quantum networks. Here, we show that droplet epitaxy InAs/InP quantum dots emitting in the telecom C-band can provide photons with coherence times exceeding 1 ns even under non-resonant excitation, more than a factor two longer than values reported for shorter wavelength quantum dots under similar conditions. We demonstrate that these coherence times enable near-optimal interference with a C-band laser qubit, with visibilities only limited by the quantum dot multiphoton emission. Using entangled photons, we further show teleportation of such qubits in six different bases with average fidelity reaching 88.3±4%. Beyond direct applications in long-distance quantum communication, the high degree of coherence in these quantum dots is promising for future spin based telecom quantum network applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.