We present our discovery of a group of side-channel vulnerabilities in implementations of the ECDSA signature algorithm in a widely used Atmel AT90SC FIPS 140-2 certified smartcard chip and five cryptographic libraries (libgcrypt, wolfSSL, MatrixSSL, SunEC/OpenJDK/Oracle JDK, Crypto++). Vulnerable implementations leak the bit-length of the scalar used in scalar multiplication via timing. Using leaked bit-length, we mount a lattice attack on a 256-bit curve, after observing enough signing operations. We propose two new methods to recover the full private key requiring just 500 signatures for simulated leakage data, 1200 for real cryptographic library data, and 2100 for smartcard data. The number of signatures needed for a successful attack depends on the chosen method and its parameters as well as on the noise profile, influenced by the type of leakage and used computation platform. We use the set of vulnerabilities reported in this paper, together with the recently published TPM-FAIL vulnerability [MSE+20] as a basis for real-world benchmark datasets to systematically compare our newly proposed methods and all previously published applicable lattice-based key recovery methods. The resulting exhaustive comparison highlights the methods’ sensitivity to its proper parametrization and demonstrates that our methods are more efficient in most cases. For the TPM-FAIL dataset, we decreased the number of required signatures from approximately 40 000 to mere 900.
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.