Vascular calcifications (VCs) are actively regulated biological processes associated with crystallization of hydroxyapatite in the extracellular matrix and in cells of the media (VCm) or intima (VCi) of the arterial wall. Both patterns of VC often coincide and occur in patients with type II diabetes, chronic kidney disease, and other less frequent disorders; VCs are also typical in senile degeneration. In this article, we review the current state of knowledge about the pathology, molecular biology, and nosology of VCm, expand on potential mechanisms responsible for poor prognosis, and expose some of the directions for future research in this area.
Calcification is a common complication in cardiovascular disease and may affect both arteries and heart valves. Matrix ␥-carboxyglutamic acid (Gla) protein (MGP) is a potent inhibitor of vascular calcification, the activity of which is regulated by vitamin K.
The comparison with histopathology confirms that tissue density as determined by contrast-enhanced MDCT might be used to differentiate atherosclerotic plaque morphology.
Objective: To evaluate the diagnostic accuracy of 16 slice computed tomography (CT) in determining plaque morphology and composition in an experimental setting. The results were compared with histopathological analysis as the reference standard. Methods: Nine human popliteal arteries derived from amputations because of atherosclerotic disease were investigated with multislice spiral CT (MSCT). Atherosclerotic lesions were morphologically classified (completely or partially occlusive, concentric, eccentric), and tissue densities were determined within these plaques. In addition, vessel dimensions were quantitatively measured. Conclusions: 16 slice CT was found to be a reliable non-invasive imaging technique for assessing atherosclerotic plaque morphology and composition. Although calcified lesions can be differentiated from non-calcified lesions, the diagnostic accuracy in further subclassifying non-calcified plaques as lipid rich and fibrotic is low, even under experimental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.