Abstract. Traditionally, behavior of Computer Generated Forces (CGFs) is controlled through scripts. Building such scripts requires time and expertise, and becomes harder as the domain becomes richer and more life-like. These downsides can be reduced by automatically generating behavior for CGFs using machine learning techniques. This paper focuses on Dynamic Scripting (DS), a technique tailored to generating agent behavior. DS searches for an optimal combination of rules from a rule base. Under the assumption that intra-team coordination leads to more effective learning, we propose an extension of DS, called DS+C, with explicit coordination. In a comparison with regular DS we find that the addition of team coordination results in earlier convergence to optimal behavior. In addition, we achieved a performance increase of 20% against an unpredictable enemy. With DS+C, behavior for CGFs can be generated that is more effective since the CGFs act on knowledge achieved by coordination and the behavior converges more efficiently than under regular DS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.