To compare breast cancer detection performance of radiologists reading mammographic examinations unaided versus supported by an artificial intelligence (AI) system. Materials and Methods: An enriched retrospective, fully crossed, multireader, multicase, HIPAA-compliant study was performed. Screening digital mammographic examinations from 240 women (median age, 62 years; range, 39-89 years) performed between 2013 and 2017 were included. The 240 examinations (100 showing cancers, 40 leading to false-positive recalls, 100 normal) were interpreted by 14 Mammography Quality Standards Act-qualified radiologists, once with and once without AI support. The readers provided a Breast Imaging Reporting and Data System score and probability of malignancy. AI support provided radiologists with interactive decision support (clicking on a breast region yields a local cancer likelihood score), traditional lesion markers for computer-detected abnormalities, and an examination-based cancer likelihood score. The area under the receiver operating characteristic curve (AUC), specificity and sensitivity, and reading time were compared between conditions by using mixed-models analysis dof variance and generalized linear models for multiple repeated measurements. Results: On average, the AUC was higher with AI support than with unaided reading (0.89 vs 0.87, respectively; P = .002). Sensitivity increased with AI support (86% [86 of 100] vs 83% [83 of 100]; P = .046), whereas specificity trended toward improvement (79% [111 of 140]) vs 77% [108 of 140]; P = .06). Reading time per case was similar (unaided, 146 seconds; supported by AI, 149 seconds; P = .15). The AUC with the AI system alone was similar to the average AUC of the radiologists (0.89 vs 0.87). Conclusion: Radiologists improved their cancer detection at mammography when using an artificial intelligence system for support, without requiring additional reading time. Published under a CC BY 4.0 license.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.