Friction in ordered atomistic layers plays a central role in various nanoscale systems ranging from nanomachines to biological systems. It governs transport properties, wear and dissipation. Defects and incommensurate lattice constants markedly change these properties. Recently, experimental systems have become accessible to probe the dynamics of nanofriction. Here, we present a model system consisting of laser-cooled ions in which nanofriction and transport processes in self-organized systems with back action can be studied with atomic resolution. We show that in a system with local defects resulting in incommensurate layers, there is a transition from sticking to sliding with Aubry-type signatures. We demonstrate spectroscopic measurements of the soft vibrational mode driving this transition and a measurement of the order parameter. We show numerically that both exhibit critical scaling near the transition point. Our studies demonstrate a simple, well-controlled system in which friction in self-organized structures can be studied from classical- to quantum-regimes.
Trapped-ion optical clocks are capable of achieving systematic fractional frequency uncertainties of 10 −18 and possibly below. However, the stability of current ion clocks is fundamentally limited by the weak signal of single-ion interrogation. We present an operational, scalable platform for extending clock spectroscopy to arrays of Coulomb crystals consisting of several tens of ions, while allowing systematic shifts as low as 10 −19 . Using a newly developed technique, we observe 3D excess micromotion amplitudes inside a Coulomb crystal with atomic spatial resolution and sub-nanometer amplitude uncertainties. We show that in ion Coulomb crystals of 400 µm and 2 mm length, time dilation shifts of In + ions due to micromotion can be close to 1 × 10 −19 and below 10 −18 , respectively. In previous ion traps, excess micromotion would have dominated the uncertainty budget for spectroscopy of even a few ions. By minimizing its contribution and providing a means to quantify it, this work opens up the path to precision spectroscopy in many-body ion systems, enabling entanglement-enhanced ion clocks and providing a well-controlled, strongly coupled quantum system.
In order to improve the short-term stability of trapped-ion optical clocks, we are developing a frequency standard based on 115 In + / 172 Yb + Coulomb crystals. For this purpose, we have developed scalable segmented Paul traps which allow a high level of control for multiple ion ensembles. In this article, we detail on our recent results regarding the reduction of the leading sources of frequency uncertainty introduced by the ion trap: 2nd-order Doppler shifts due to micromotion and the heating of secular motion, as well as the black-body radiation shift due to warming of the trap. We show that the fractional frequency uncertainty due to each of these effects can be reduced to well below 10 −19 .
We study nanofriction in an ion Coulomb crystal under the presence of a topological defect. We have previously observed signatures of the pinning to sliding transition i.e. the symmetry breaking at the critical point and the existence of a vibrational soft mode. Here we discuss how they depend on the position of the topological defect and how external potentials, such as anharmonic trapping potentials or differential light pressure, can be used to change the defect position. The resulting forces tend to break the intrinsic crystal symmetry, thereby reducing mode softening near the transition. We show that the topological defect mode is sensitive to differential forces at the 10 −24 N level. We find that the local structure and position of the topological defect is essential for the presence of the soft mode and illustrate how the defect changes its properties, when it moves through the crystal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.