Most methods for the recognition of shape classes from 3D datasets focus on classifying clean, often manually generated models. However, 3D shapes obtained through acquisition techniques such as Structure-from-Motion or LIDAR scanning are noisy, clutter and holes. In that case global shape features-still dominating the 3D shape class recognition literature-are less appropriate. Inspired by 2D methods, recently researchers have started to work with local features. In keeping with this strand, we propose a new robust 3D shape classification method. It contains two main contributions. First, we extend a robust 2D feature descriptor, SURF, to be used in the context of 3D shapes. Second, we show how 3D shape class recognition can be improved by probabilistic Hough transform based methods, already popular in 2D.Through our experiments on partial shape retrieval, we show the power of the proposed 3D features. Their combination with the Hough transform yields superior results for class recognition on standard datasets. The potential for the applicability of such a method in classifying 3D obtained from Structure-from-Motion methods is promising, as we show in some initial experiments.
Abstract. We seek to recognize the place depicted in a query image using a database of "street side" images annotated with geolocation information. This is a challenging task due to changes in scale, viewpoint and lighting between the query and the images in the database. One of the key problems in place recognition is the presence of objects such as trees or road markings, which frequently occur in the database and hence cause significant confusion between different places. As the main contribution, we show how to avoid features leading to confusion of particular places by using geotags attached to database images as a form of supervision. We develop a method for automatic detection of image-specific and spatially-localized groups of confusing features, and demonstrate that suppressing them significantly improves place recognition performance while reducing the database size. We show the method combines well with the state of the art bag-of-features model including query expansion, and demonstrate place recognition that generalizes over wide range of viewpoints and lighting conditions. Results are shown on a geotagged database of over 17K images of Paris downloaded from Google Street View.
We propose a new approach for semantic segmentation of 3D city models. Starting from an SfM reconstruction of a street-side scene, we perform classification and facade splitting purely in 3D, obviating the need for slow imagebased semantic segmentation methods. We show that a properly trained pure-3D approach produces high quality labelings, with significant speed benefits (20x faster) allowing us to analyze entire streets in a matter of minutes. Additionally, if speed is not of the essence, the 3D labeling can be combined with the results of a state-of-the-art 2D classifier, further boosting the performance. Further, we propose a novel facade separation based on semantic nuances between facades. Finally, inspired by the use of architectural principles for 2D facade labeling, we propose new 3D-specific principles and an efficient optimization scheme based on an integer quadratic programming formulation.
In this paper we present a method to combine the detection and segmentation of object categories from 3D scenes. In the process, we combine the top-down cues available from object detection technique of Implicit Shape Models and the bottom-up power of Markov Random Fields for the purpose of segmentation. While such approaches have been tried for the 2D image problem domain before, this is the first application of such a method in 3D. 3D scene understanding is prone to many problems different from 2D owing to problems from noise, lack of distinctive high-frequency feature information, mesh parametrization problems etc. Our method enables us to localize objects of interest for more purposeful meshing and subsequent scene understanding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.