This paper is the result of the first-phase, inter-disciplinary work of a multi-disciplinary research project (“Urban pop-up housing environments and their potential as local innovation systems”) consisting of energy engineers and waste managers, landscape architects and spatial planners, innovation researchers and technology assessors. The project is aiming at globally analyzing and describing existing pop-up housings (PUH), developing modeling and assessment tools for sustainable, energy-efficient and socially innovative temporary housing solutions (THS), especially for sustainable and resilient urban structures. The present paper presents an effective application of hierarchical agglomerative clustering (HAC) for analyses of large datasets typically derived from field studies. As can be shown, the method, although well-known and successfully established in (soft) computing science, can also be used very constructively as a potential urban planning tool. The main aim of the underlying multi-disciplinary research project was to deeply analyze and structure THS and PUE. Multiple aspects are to be considered when it comes to the characterization and classification of such environments. A thorough (global) web survey of PUH and analysis of scientific literature concerning descriptive work of PUH and THS has been performed. Moreover, out of several tested different approaches and methods for classifying PUH, hierarchical clustering algorithms functioned well when properly selected metrics and cut-off criteria were applied. To be specific, the ‘Minkowski’-metric and the ‘Calinski-Harabasz’-criteria, as clustering indices, have shown the best overall results in clustering the inhomogeneous data concerning PUH. Several additional algorithms/functions derived from the field of hierarchical clustering have also been tested to exploit their potential in interpreting and graphically analyzing particular structures and dependencies in the resulting clusters. Hereby, (math.) the significance ‘S’ and (math.) proportion ‘P’ have been concluded to yield the best interpretable and comprehensible results when it comes to analyzing the given set (objects n = 85) of researched PUH-objects together with their properties (n > 190). The resulting easily readable graphs clearly demonstrate the applicability and usability of hierarchical clustering- and their derivative algorithms for scientifically profound building classification tasks in Urban Planning by effectively managing huge inhomogeneous building datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.