Pro-inflammatory cytokines, such as interleukin (IL)-1beta and tumour necrosis factor (TNF)-alpha have been suggested to be involved in the pathophysiology of depression and in the mechanism of action of antidepressant drugs. Until now the effect of antidepressants on cytokines has been examined only in plasma, blood mononuclear cells and spleen, which reflect the activity of peripheral cytokine network. The aim of this study was to evaluate the effect of amitriptyline and its metabolite nortriptyline on the release of IL-1beta and TNF-alpha by lipopolysaccharide (LPS)-activated rat mixed glial and microglial cell cultures. LPS stimulated the release of both cytokines. The exposure of mixed glial culture to amitriptyline and nortriptyline led to a decrease in both IL-1beta and TNF-alpha release. Moreover, amitriptyline reduced LPS-stimulated IL-1beta release by microglial cultures. Although amitriptyline reduced secretion of both cytokines, the drug did not affect IL-1beta and TNF-alpha mRNAs in mixed cell cultures. Our study has shown for the first time that amitriptyline and nortriptyline administered at concentrations which may be achieved in plasma and brain structures during treatment, inhibit the secretion of IL-1beta and TNF-alpha in rat mixed glial and microglial cell cultures. The obtained results support the previous observations that antidepressants are able to reduce peripheral release of pro-inflammatory cytokines and suggest that the cytokine network may be involved in the central mechanism of action of amitriptyline and nortriptyline.
Both 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) as well as peroxisome proliferator-activated receptor (PPAR)alpha activators (fibrates) proved to be effective in the primary and secondary prevention of cardiovascular diseases. The benefits of hypolipemic therapy in cardiovascular diseases cannot be explained only by the lipid-lowering potential of these agents. The aim of this study was to clarify the effect of hypolipemic agents on proinflammatory cytokine release from human monocytes in relationship with their action on plasma levels of sensitive systemic marker of low-grade vascular inflammation. Plasma lipid and high-sensitivity C-reactive protein (hsCRP) levels, and the release of tumor necrosis factor-alpha (TNFalpha) and interleukin-1beta from monocytes were assessed at baseline and 30 and 90 days following randomization of IIa dyslipidemic patients into fluvastatin or simvastatin groups and randomization of type IIb dyslipidemic patients to the micronized form of either ciprofibrate or fenofibrate. Lipopolysaccharide-stimulated monocytes from dyslipidemic patients released significantly more TNFalpha (types IIa and IIb dyslipidemias) and interleukin-1beta (type IIa dyslipidemia) in comparison with monocytes in 59 age-, sex-, and weight-matched control subjects. Their baseline hsCRP levels were also higher. Both statins and fibrates reduced the release of TNFalpha and interleukin-1beta, and lowered plasma hsCRP levels. The effects of hypolipemic agents on cytokine release and plasma hsCRP were unrelated to their lipid-lowering action. Our results have demonstrated that type IIa and IIb dyslipidemic patients exhibit the abnormal pattern of TNFalpha and interleukin-1beta production by activated monocytes. Both HMG-CoA reductase inhibitors and PPARalpha activators normalize monocytic secretion of these cytokines, and this action may partially contribute to the systemic antiinflammatory effect of hypolipemic agents. The statin- and fibrate-induced suppression of proinflammatory cytokine release from monocytes seems to play a role in their beneficial effect on the incidence of cardiovascular events.
Imipramine and fluoxetine, by modulating glia activation, may exert anti-inflammatory effects in the CNS. It also seems that microglia cells are important target particularly for imipramine.
Schizophrenia is a multifactorial disease with changes in immunological system. Such changes are the result of cytokine-level disturbances connected with cytokine gene polymorphisms. However, research about cytokine gene polymorphisms in schizophrenia has been surprisingly limited and ambiguous. The aim of the study was to identify whether polymorphisms of interleukin (IL)-6 and IL-10 are risk factors for the development of paranoid schizophrenia in case-control study. IL-6 (-174G/C; rs 1800795) and IL-10 (-1082G/A; rs 1800896) promoter polymorphisms in patients with paranoid schizophrenia and healthy individuals were genotyped using polymerase chain reaction-restriction fragment length polymorphism method. Differences in IL-6 and IL-10 promoter haplotypes may play an important role in determining the transcription level for IL-6 and IL-10 genes in schizophrenic patients. The presence of allele C at position -174 of IL-6 promoter sequence may correlate with increasing risk of paranoid schizophrenia in the Polish population, but research on a broadened group of people is needed. The presence of allele G at position -1082 of IL-10 promoter sequence correlates with increasing risk of paranoid schizophrenia in the Polish population. The coexistence of genotype GG at position -1082 of IL-10 promoter sequence and genotype GC at position -174 of IL-6 promoter sequence correlates with increasing risk of paranoid schizophrenia in the Polish population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.