Multi-objective recommender systems address the difficult task of recommending items that are relevant to multiple, possibly conflicting, criteria. However these systems are most o en designed to address the objective of one single stakeholder, typically, in online commerce, the consumers whose input and purchasing decisions ultimately determine the success of the recommendation systems. In this work, we address the multi-objective, multi-stakeholder, recommendation problem involving one or more objective(s) per stakeholder. In addition to the consumer stakeholder, we also consider two other stakeholders; the suppliers who provide the goods and services for sale and the intermediary who is responsible for helping connect consumers to suppliers via its recommendation algorithms. We analyze the multi-objective, multi-stakeholder, problem from the point of view of the online marketplace intermediary whose objective is to maximize its commission through its recommender system. We define a multi-objective problem relating all our three stakeholders which we solve with a novel learning-to-rerank approach that makes use of a novel regularization function based on the Kendall tau correlation metric and its kernel version; given an initial ranking of item recommendations built for the consumer, we aim to re-rank it such that the new ranking is also optimized for the secondary objectives while staying close to the initial ranking. We evaluate our approach on a real-world dataset of hotel recommendations provided by Expedia where we show the effectiveness of our approach against a business-rules oriented baseline model.
This chapter outlines the approach of Expedia Group, the world's travel platform, and the role of technology in revolutionizing travel search, discovery, and booking. It covers innovations developed by online travel agencies (OTAs) and the unique challenges and opportunities provided by the breadth and depth of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.