New-world primates such as the marmoset (Callithrix jacchus) show polymorphism for the middle- to long-wavelength sensitive cone pigments. Each X-chromosome carries a gene for only one of three possible pigments. All males are thus dichromats, but some females will be trichromats. We have investigated the responses of cells of the parvocellular (PC) and magnocellular (MC) systems within animals from a single marmoset family. The middle- to long-wavelength pigment of dichromats was identified physiologically. Trichromats could readily be distinguished from dichromats by the presence of a high proportion of red-green opponent PC-cells. The physiological classification of phenotypes was confirmed with genetic analysis. The pattern of inheritance was consistent with current genetic models. In trichromatic females, the properties of cells resembled in detail those of cells from the PC- and MC-pathways of the macaque. In dichromats, cell responses resembled those of trichromats (except for the lack of opponency in PC-cells); PC-cells showed sustained and MC-cells transient responses, with a lower contrast gain for the former type. One difference was that a proportion of PC-cells in dichromats showed strong rod input even at high levels of retinal illuminance. Thus, in trichromatic marmosets the presence of two middle- to long-wave pigments appears to permit the elaboration of all the physiological properties associated with trichromacy.
The strength of rod inputs to ganglion cells was assessed in the macaque retina at retinal positions within 3-15 deg eccentricity. The experimental paradigm used temporally modulated heterochromatic lights whose relative phase was varied. This paradigm provided a sensitive test to detect rod input. In parvocellular (PC) pathway cells, the gain of the cone-driven signal decreased with decrease in luminance. At 2 td a weak rod response, of a few impulses per second for 100% rod modulation, was revealed in about 60% of cells. For blue-on cells, the cone-driven response also decreased with retinal illuminance, but no rod response could be found. In magnocellular (MC) pathway cells, rod input was much more apparent. Responses became rod dominated at and below 20 td; we cannot exclude rod intrusion at higher retinal illuminances. Responsivity was maintained even at low retinal illuminances. Temporal-frequency dependent rod-cone interactions were observed in MC-pathway cells. Rod responses were of longer latency than cone responses, but there was no evidence of any difference in rod latency between parvocellular and magnocellular pathways.
Estimates of the relative numbers of long-wavelength-sensitive (L) and middle-wavelength-sensitive (M) cones vary considerably among normal trichromats and depend significantly on the nature of the experimental method employed. Here we estimate L/M cone ratios in a population of normal observers, using three psychophysical tasks-detection thresholds for cone-isolating stimuli at different temporal frequencies, heterochromatic flicker photometry, and cone contrast ratios at minimal flicker perception--as well as flicker electroretinography and retinal densitometry. The psychophysical tasks involving high temporal frequencies, specifically designed to tap into the luminance channel, provide average L/M cone ratios that significantly differ from unity with large interindividual variation. In contrast, the psychophysical tasks involving low temporal frequencies, chosen to tap into the red-green chromatic channel, provide L/M cone ratios that are always close to unity. L/M cone ratios determined from electroretinographic recordings or from retinal densitometry correlate with those determined from the high-temporal-frequency tasks. These findings suggest that the sensitivity of the luminance channel is directly related to the relative densities of the L and the M cones and that the red-green chromatic channel introduces a gain adjustment to compensate for differences in L and M cone signal strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.