ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
A simple convenient method has been developed for the preparation of N-acetyl-S-arylcysteines based on the ChanLam-Evans arylation of N,NЈ-diacetylcystine dimethyl ester with arylboronic acids and used to synthesize a series of arylmercapturic acids.
The urine from mice exposed to styrene vapors (600 and 1200 mg/m(3), 6 h) was analyzed for ring-oxidized metabolites of styrene. To facilitate the identification of metabolites in urine, the following potential metabolites were prepared: 2-, 3-, and 4-vinylphenol (2-, 3-, and 4-VP), 4-vinylpyrocatechol, and 2-, 3-, and 4-vinylphenylmercapturic acid (2-, 3-, and 4-VPMA). For the analysis of vinylphenols beta-glucuronidase-treated urine was extracted and derivatized with acetanhydride/triethylamine before injection into GC/MS. Three isomers, 2-, 3-, and 4-VP, were found in the exposed urine using authentic standards. Additionally, three novel minor urinary metabolites, arylmercapturic acids 2-, 3-, and 4-VPMA, were identified by LC-ESI-MS(2) by comparison with authentic standards. Excretion of the most abundant isomer, 4-VPMA, amounted to 535 +/- 47 nmol/kg and 984 +/- 78 nmol/kg, representing approximately 0.047 and 0.043% of the absorbed dose for the exposure levels of 600 and 1200 mg/m(3), respectively. The ratio of 2-VPMA, 3-VPMA, and 4-VPMA was approximately 2:1:6. In model reactions of styrene 3,4-oxide (3,4-STO) with N-acetylcysteine in aqueous solutions and of its methyl ester in methanol, 4-vinylphenol was always the main product, while 3-vinylphenol has never been detected. No mercapturic acid was found in the reaction of 3,4-STO with N-acetylcysteine in aqueous solution at pH 7.4 or 9.7, but a small amount of 4-VPMA methyl ester was detected by LC-ESI-MS after the reaction of 3,4-STO with N-acetylcysteine methyl ester. In contrast, no mercapturic acid was found in the reaction of 3,4-STO with N-acetylcysteine in aqueous solution at pH 7.4 or 9.7. These findings indicate a capability of 3,4-STO to react with cellular thiol groups despite its rapid isomerization to vinylphenol in an aqueous environment. Moreover, the in vivo formation of 2- and 3-isomers of both VP and VPMA, neither of which was formed from 3,4-STO in vitro, strongly suggests that another arene oxide, styrene 2,3-oxide, might be a minor metabolic intermediate of styrene.
Metabolism of benzene, an important environmental and industrial carcinogen, produces three electrophilic intermediates, namely, benzene oxide and 1,2- and 1,4-benzoquinone, capable of reacting with the DNA. Numerous DNA adducts formed by these metabolites in vitro have been reported in the literature, but only one of them was hitherto identified in vivo. In a search for urinary DNA adducts, specific LC-ESI-MS methods have been developed for the determination in urine of six nucleobase adducts, namely, 7-phenylguanine, 3-phenyladenine, 3-hydroxy-3,N(4) -benzethenocytosine, N(2) -(4-hydroxyphenyl)guanine, 7-(3,4-dihydroxyphenyl)guanine and 3-(3,4-dihydroxyphenyl)-adenine (DHPA), with detection limits of 200, 10, 260, 50, 400 and 200 pg ml(-1) , respectively. Mice were exposed to benzene vapors at concentrations of 900 and 1800 mg m(-3) , 6 h per day for 15 consecutive days. The only adduct detected in their urine was DHPA. It was found in eight out of 30 urine samples from the high-exposure group at concentrations of 352 ± 146 pg ml(-1) (mean ± SD; n = 8), whereas urines from the low-exposure group were negative. Assuming the DHPA concentration in the negative samples to be half of the detection limit, conversion of benzene to DHPA was estimated to 2.2 × 10(-6) % of the absorbed dose. Thus, despite the known high mutagenic and carcinogenic potential of benzene, only traces of a single DNA adduct in urine were detected. In conclusion, DHPA is an easily depurinating adduct, thus allowing indication of only high recent exposure to benzene, but not long-term damage to DNA in tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.