Cell surface molecules have been implicated in cell interactions which underlie formation of the nervous system. The analysis of the functional properties of such molecules has profited from the combined use of antibodies and cell culture systems. It has been suggested that the interplay between these molecules modulates cell-to-cell interaction at critical developmental stages. In the mouse, N-CAM and L1 antigen have been shown to mediate Ca2+-independent adhesion among neural cells. N-CAM plays a role in fasciculation of neurites and formation of neuromuscular junction. L1 is apparently not involved in synaptogenesis, but in migration of granule cell neurones in the developing mouse cerebellar cortex. The two antigens are distinct molecular and functional entities which act synergistically in aggregation of neuroblastoma and early postnatal cerebellar cells. In view of a certain similarity in function between the two groups of molecules, it was not surprising to find that structural similarities are detectable by the monoclonal antibody L2. We show here that a carbohydrate moiety recognized by L2 and HNK-1 monoclonal antibodies, is present in mouse N-CAM and L1. The L2 epitope appears on all major neural cell types but not all N-CAM molecules express it. This heterogeneity points to a previously undetected molecular diversity which may have functional implications for modulating cell adhesion during development.
The neural cell adhesion molecules L1 and N-CAM share a common carbohydrate epitope that is recognized by the monoclonal antibodies L2 and HNK-1. The L2/HNK-1 epitope is also present on the myelin-associated glycoprotein (MAG) which is thought to mediate surface interactions between the axon and myelinating cell. Other, as yet unidentified, cell-surface glycoproteins are recognized by the two antibodies and are believed to belong to a family of neural cell adhesion molecules. To test this hypothesis, we have prepared polyclonal antibodies to a prominent member of the L2/HNK-1 family, the 160K (relative molecular mass (Mr)160,000) glycoprotein. Here we report that these antibodies, designated J1 antibodies, react with astrocytes and oligodendrocytes and interfere with neurone-astrocyte adhesion, but not with neurone-neurone or astrocyte-astrocyte adhesion. This result suggests the involvement of the J1 antigen in cell-cell interactions.
IntroductionUltrasound of the lung and quantification of B lines was recently introduced as a novel tool to detect overhydration. In the present study, we aimed to evaluate a four-region protocol of lung ultrasound to determine the pulmonary fluid status in ventilated patients in the intensive care unit.MethodsFifty patients underwent both lung ultrasound and transpulmonary thermodilution measurement with the PiCCO system. An ultrasound score based on number of single and confluent B lines per intercostal space was used to quantify pulmonary overhydration. To check for reproducibility, two different intensivists who were blinded as to the ultrasound pictures reassessed and classified them using the same scoring system. The results were compared with those obtained using other methods of evaluating hydration status, including extravascular lung water index (EVLWI) and intrathoracic blood volume index calculated with data from transpulmonary thermodilution measurements. Moreover, chest radiographs were assessed regarding signs of pulmonary overhydration and categorized based on a numeric rating scale.ResultsLung water assessment by ultrasound using a simplified protocol showed excellent correlation with EVLWI over a broad range of lung hydration grades and ventilator settings. Correlation of chest radiography and EVLWI was less accurate. No correlation whatsoever was found with central venous pressure measurement.ConclusionLung ultrasound is a useful, non-invasive tool in predicting hydration status in mechanically ventilated patients. The four-region protocol that we used is time-saving, correlates well with transpulmonary thermodilution measurements and performs markedly better than chest radiography.
Background: COVID-19 convalescent plasma (CCP) has been considered a treatment option in COVID-19. This trial assessed the efficacy of neutralizing antibody containing high-dose CCP in hospitalized adults with COVID-19 requiring respiratory support or intensive care treatment.Methods: Patients (n=105) were randomized 1:1 to either receive standard treatment and 3 units of CCP or standard treatment alone. Control group patients with progress on day 14 could cross over to the CCP group. Primary outcome was a dichotomous composite outcome of survival and no longer fulfilling criteria for severe COVID-19 on day 21. Results:The primary outcome occurred in 43.4% of patients in the CCP and 32.7% in the control group (p=0.32). The median time to clinical improvement was 26 days in the CCP group and 66 days in the control group (p=0.27). Median time to discharge from hospital was 31 days in the CCP and 51 days in the control group (p=0.24). In the subgroup that received a higher cumulative amount of neutralizing antibodies the primary outcome occurred in 56.0% (versus 32.1%), with significantly shorter intervals to clinical improvement (20 versus 66 days)(p<0.05), and to hospital discharge (21 versus 51 days, p=0.03) and better survival (day-60 probability of survival 91.6% versus 68.1%; p=0.02) compared to the control group. Conclusion:CCP added to standard treatment was not associated with significant improvement in the primary and secondary outcomes. A pre-defined subgroup analysis showed a significant benefit for CCP among those who received a larger amount of neutralizing antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.