Chelation, electrochemical, antioxidant and cytoprotective properties of six phenolics - cynarin and caffeic, chlorogenic, ferulic, protocatechuic and rosmarinic acids were studied on the following models: (i) chelation of transition metals, (ii) quenching of the diphenylpicrylhydrazyl radical (DPPH), (iii) determination of half-wave potential, (iv) erythrocytes or mitochondrial membranes damaged by tert-butyl hydroperoxide (tBH) and (v) a primary culture of rat hepatocytes intoxicated by Cu(II) and Fe(III) or tBH. All phenolics suppressed cell membrane damage induced by transition metals or tBH. The protectivity correlated with their capacity to bind transition metals, to scavenge DPPH radical and with the value of half-wave potentials. In in vitro assays, the most promising was rosmarinic acid.
The quaternary benzophenanthridine alkaloids sanguinarine (1) and chelerythrine (2) inhibit rat liver L-alanine-:2-oxoglutarate aminotransferase (EC 2.6.1.2) activity. Nitidine (3) has no inhibitory effect. The inhibitory activity of alkaloids depends on the reactivity of the iminium bond with the nucleophilic reagent, e.g., the thiol group. The stability constants of adduct formation for thioethanol, cysteine, and glutathione with sanguinarine (1) and chelerythrine (2) are given. The mechanism of the inhibition of alanine aminotransferase activity by the alkaloids 1 and 2 is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.