We consider isoparametric finite element discretizations of semilinear acoustic wave equations with kinetic boundary conditions and derive a corresponding error bound as our main result. The difficulty is that such problems are stated on domains with curved boundaries and this renders the discretizations nonconforming. Our approach is to provide a unified error analysis for nonconforming space discretizations for semilinear wave equations. In particular, we introduce a general, abstract framework for nonconforming space discretizations in which we derive a-priori error bounds in terms of interpolation, data, and conformity errors. The theory applies to a large class of problems and discretizations that fit into the abstract framework. The error bound for wave equations with kinetic boundary conditions is obtained from the general theory by inserting known interpolation and geometric error bounds into the abstract error result of the unified error analysis.
We construct and analyze a second-order implicit–explicit (IMEX) scheme for the time integration of semilinear second-order wave equations. The scheme treats the stiff linear part of the problem implicitly and the nonlinear part explicitly. This makes the scheme unconditionally stable and at the same time very efficient, since it only requires the solution of one linear system of equations per time step. For the combination of the IMEX scheme with a general, abstract, nonconforming space discretization we prove a full discretization error bound. We then apply the method to a nonconforming finite element discretization of an acoustic wave equation with a kinetic boundary condition. This yields a fully discrete scheme and a corresponding a-priori error estimate.
Since their introduction in 1967, Lawson methods have achieved constant interest in the time discretization of evolution equations. The methods were originally devised for the numerical solution of stiff differential equations. Meanwhile, they constitute a well-established class of exponential integrators, which has turned out to be competitive for solving space discretizations of certain types of partial differential equations. The popularity of Lawson methods is in some contrast to the fact that they may have a bad convergence behaviour, since they do not satisfy any of the stiff order conditions. The aim of this paper is to explain this discrepancy. It is shown that non-stiff order conditions together with appropriate regularity assumptions imply high-order convergence of Lawson methods. Note, however, that the term regularity here includes the behaviour of the solution at the boundary. For instance, Lawson methods will behave well in the case of periodic boundary conditions, but they will show a dramatic order reduction for, e.g., Dirichlet boundary conditions. The precise regularity assumptions required for high-order convergence are worked out in this paper and related to the corresponding assumptions for splitting schemes. In contrast to previous work, the analysis is based on expansions of the exact and the numerical solution along the flow of the homogeneous problem. Numerical examples for the Schrödinger equation are included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.