Lewis, Jack A.; and Chung, Soohee, "Biocontrol agents applied individually and in combination for suppression of soilborne diseases of cucumber" (2005
AbstractThe soilborne pathogens Rhizoctonia solani, Pythium ultimum, and Meloidogyne incognita can cause severe economic losses to field-and greenhouse-grown cucumber. A collection of bacterial isolates and isolates GL3 and GL21 of Trichoderma virens were screened for suppression of diseases caused by these pathogens. T. virens isolates GL3 and GL21 provided the most effective suppression of damping-off caused by R. solani in greenhouse bioassays. Burkholderia ambifaria BC-F, B. cepacia BC-1, and Serratia marcescens N1-14 also provided significant suppression of R. solani relative to the pathogen check in some experiments. T. virens isolates GL3 and GL21 and S. marcescens isolates N1-6, N1-14, and N2-4 provided the most consistent and effective suppression of damping-off of cucumber caused by P. ultimum in growth chamber experiments. No microbial treatment containing individual or combined microbes significantly suppressed populations of M. incognita on cucumber or improved plant vigor in greenhouse bioassays. T. virens GL21 applied as a granular formulation, in combination with B. cepacia BC-1 or B. ambifaria BC-F applied as a seed treatment, significantly improved suppression of damping-off caused by R. solani over individual applications of these microbes in at least one experiment. Treatments combining B. cepacia BC-1, B. ambifaria BC-F, or S. marcescens isolates N1-14 or N2-4 with T. virens GL21 in R. solani biocontrol assays always resulted in plant stands that were similar or greater than treatments containing individual applications of these microbes. B. ambifaria BC-F combined with T. virens GL21 in seed treatments resulted in significantly improved suppression of damping-off caused by P. ultimum in two of three experiments. Populations of T. virens GL3 and GL21 were both substantially reduced after coincubation with B. cepacia BC-1, or S. marcescens isolates N1-14 or N2-4 for 10 to 12 d in cucumber rhizospheres. Populations of T. virens GL21 were slightly reduced after coincubation with B. ambifaria BC-F. Results presented here substantiate other studies reporting enhanced biocontrol performance This article is a U.S. government work, and is not subject to copyright in the United States.with certain combinations of biocontrol agents. These results also indicate that antagonism among combinations of biocontrol agents can vary with the assay system employed. r
Summary1. For many adult nectar-feeding parasitoids food and moisture are essential for survival in the field. Early in the season, when floral nectar is not yet available in cotton, extrafloral nectar (EFN) is already present on young cotton plants. 2. The parasitoid Microplitis croceipes (Cresson) can use EFN cotton plants as an only food source. The longevity and reproduction of EFN-fed female wasps was comparable to wasps fed with honey and water provided on nectariless (NL) cotton plants, and was significantly higher compared with wasps kept on NL plants with no additional food source. 3. Wasps that were given preflight experiences on EFN cotton plants choose EFN cotton over NL cotton plants in two choice experiments in the flight tunnel. The parasitoids are more willing to search on an EFN plant at their second and third encounter with a plant previously visited, compared with an NL cotton plant. 4. Wasps can locate EFN from short distances by its odour alone, and find it almost as fast as honey, but much faster than odourless sucrose, which is only found randomly. Experience with EFN increased the retention ability of parasitoids on a flower model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.