To provide clinically relevant criteria for differentiation between the athlete’s heart and similar appearing hypertrophic (HCM), dilated (DCM), and arrhythmogenic right-ventricular cardiomyopathy (ARVC) in MRI. 40 top-level athletes were prospectively examined with cardiac MR (CMR) in two university centres and compared to retrospectively recruited patients diagnosed with HCM (n = 14), ARVC (n = 18), and DCM (n = 48). Analysed MR imaging parameters in the whole study cohort included morphology, functional parameters and late gadolinium enhancement (LGE). Mean left-ventricular enddiastolic volume index (LVEDVI) was high in athletes (105 ml/m2) but significantly lower compared to DCM (132 ml/m2; p = 0.001). Mean LV ejection fraction (EF) was 61% in athletes, below normal in 7 (18%) athletes vs. EF 29% in DCM, below normal in 46 (96%) patients (p < 0.0001). Mean RV-EF was 54% in athletes vs. 60% in HCM, 46% in ARVC, and 41% in DCM (p < 0.0001). Mean interventricular myocardial thickness was 10 mm in athletes vs. 12 mm in HCM (p = 0.0005), 9 mm in ARVC, and 9 mm in DCM. LGE was present in 1 (5%) athlete, 8 (57%) HCM, 10 (56%) ARVC, and 21 (44%) DCM patients (p < 0.0001). Healthy athletes’ hearts are characterized by both hypertrophy and dilation, low EF of both ventricles at rest, and increased interventricular septal thickness with a low prevalence of LGE. Differentiation of athlete’s heart from other non-ischemic cardiomyopathies in MRI can be challenging due to a significant overlap of characteristics also seen in HCM, ARVC, and DCM.
(1) Objectives: To discriminate biopsy-proven myocarditis (chronic vs. healed myocarditis) and to differentiate from dilated cardiomyopathy (DCM) using cardiac magnetic resonance (CMR). (2) Methods: A total of 259 consecutive patients (age 51 ± 15 years; 28% female) who underwent both endomyocardial biopsy (EMB) and CMR in the years 2008–2021 were evaluated. According to right-ventricular EMB results, patients were divided into either chronic (n = 130, 50%) or healed lymphocytic myocarditis (n = 60, 23%) or DCM (n = 69, 27%). The CMR protocol included functional, strain, and late gadolinium enhancement (LGE) imaging, T2w imaging, and T2 mapping. (3) Results: Left-ventricular ejection fraction (LV-EF) was higher, and the indexed end-diastolic volume (EDV) was lower in myocarditis patients (chronic: 42%, median 96 mL/m²; healed: 49%, 86 mL/m²) compared to the DCM patients (31%, 120 mL/m²), p < 0.0001. Strain analysis demonstrated lower contractility in DCM patients vs. myocarditis patients, p < 0.0001. Myocarditis patients demonstrated a higher LGE prevalence (68% chronic; 59% healed) than the DCM patients (45%), p = 0.01. Chronic myocarditis patients showed a higher myocardial edema prevalence and ratio (59%, median 1.3) than healed myocarditis (23%, 1.3) and DCM patients (13%, 1.0), p < 0.0001. T2 mapping revealed elevated values more frequently in chronic (90%) than in healed (21%) myocarditis and DCM (23%), p < 0.0001. T2 mapping yielded an AUC of 0.89 (sensitivity 90%, specificity 76%) in the discrimination of chronic from healed myocarditis and an AUC of 0.92 (sensitivity 86%, specificity 91%) in the discrimination of chronic myocarditis from DCM, both p < 0.0001. (4) Conclusions: Multiparametric CMR imaging, including functional parameters, LGE and T2 mapping, may allow differentiation of chronic from healed myocarditis and DCM and therefore help to optimize patient management in this clinical setting.
(1) Background: Compared to acute myocarditis in the initial phase, detection of subacute myocarditis with cardiac magnetic resonance (CMR) parameters can be challenging due to a lower degree of myocardial inflammation compared to the acute phase. (2) Objectives: To systematically evaluate non-invasive CMR imaging parameters in acute and subacute myocarditis. (3) Methods: 48 patients (age 37 (IQR 28–55) years; 52% female) with clinically suspected myocarditis were consecutively included. Patients with onset of symptoms ≤2 weeks prior to 1.5T CMR were assigned to the acute group (n = 25, 52%), patients with symptom duration >2 to 6 weeks were assigned to the subacute group (n = 23, 48%). CMR protocol comprised morphology, function, 3D-strain, late gadolinium enhancement (LGE) imaging and mapping (T1, ECV, T2). (4) Results: Highest diagnostic performance in the detection of subacute myocarditis was achieved by ECV evaluation either as single parameter or in combination with T1 mapping (applying a segmental or global increase of native T1 > 1015 ms and ECV > 28%), sensitivity 96% and accuracy 91%. Compared to subacute myocarditis, acute myocarditis demonstrated higher prevalence and extent of LGE (AUC 0.76) and increased T2 (AUC 0.66). (5) Conclusions: A comprehensive CMR approach allows reliable diagnosis of clinically suspected subacute myocarditis. Thereby, ECV alone or in combination with native T1 mapping indicated the best performance for diagnosing subacute myocarditis. Acute vs. subacute myocarditis is difficult to discriminate by CMR alone, due to chronological connection and overlap of pathologic findings.
(1) Background and Objectives: Dark-blood late gadolinium enhancement has been shown to be a reliable cardiac magnetic resonance (CMR) method for assessing viability and depicting myocardial scarring in ischemic cardiomyopathy. The aim of this study was to evaluate dark-blood LGE imaging compared with conventional bright-blood LGE for the detection of myocardial scarring in non-ischemic cardiomyopathies. (2) Materials and Methods: Patients with suspected non-ischemic cardiomyopathy were prospectively enrolled in this single-centre study from January 2020 to March 2023. All patients underwent 1.5 T CMR with both dark-blood and conventional bright-blood LGE imaging. Corresponding short-axis stacks of both techniques were analysed for the presence, distribution, pattern, and localisation of LGE, as well as the quantitative scar size (%). (3) Results: 343 patients (age 44 ± 17 years; 124 women) with suspected non-ischemic cardiomyopathy were examined. LGE was detected in 123 of 343 cases (36%) with excellent inter-reader agreement (κ 0.97–0.99) for both LGE techniques. Dark-blood LGE showed a sensitivity of 99% (CI 98–100), specificity of 99% (CI 98–100), and an accuracy of 99% (CI 99–100) for the detection of non-ischemic scarring. No significant difference in total scar size (%) was observed. Dark-blood imaging with mean 5.35 ± 4.32% enhanced volume of total myocardial volume, bright-blood with 5.24 ± 4.28%, p = 0.84. (4) Conclusions: Dark-blood LGE imaging is non-inferior to conventional bright-blood LGE imaging in detecting non-ischemic scarring. Therefore, dark-blood LGE imaging may become an equivalent method for the detection of both ischemic and non-ischemic scars.
Objectives: To systematically compare two modified Look-Locker inversion recovery (MOLLI) T1 mapping sequences and their impact on (1) myocardial T1 values native, (2) post-contrast and (3) extracellular volume (ECV). Methods: 200 patients were prospectively included for 1.5 T CMR for work-up of ischemic or non-ischemic cardiomyopathies. To determine native and post-contrast T1 for ECV calculation, two different T1 mapping MOLLI acquisition schemes, 5(3)3 (designed for native scans with long T1) and 4(1)3(1)2 (designed for post-contrast scans with short T1), were acquired in identical mid-ventricular short-axis slices. Both schemes were acquired in native and post-contrast scans. Results: Datasets from 163 patients were evaluated (age 55 ± 17 years; 38% female). Myocardial T1 native for 5(3)3 was 1017 ± 42 ms vs. 956 ± 40 ms for 4(1)3(1)2, with mean intraindividual difference −61 ms (p < 0.0001). Post-contrast myocardial T1 in patients was similar for both acquisition schemes, with 494 ± 48 ms for 5(3)3 and 490 ± 45 ms for 4(1)3(1)2 and mean intraindividual difference −4 ms. Myocardial ECV for 5(3)3 was 27.6 ± 4% vs. 27 ± 4% for 4(1)3(1)2, with mean difference −0.6 percentage points (p < 0.0001). Conclusions: The T1 MOLLI 5(3)3 acquisition scheme provides a reliable estimation of myocardial T1 for the clinically relevant range of long and short T1 values native and post-contrast. In contrast, the T1 MOLLI 4(1)3(1)2 acquisition scheme may only be used for post-contrast scans according to its designed purpose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.