The nematode Pristionchus pacificus is an established model for integrative evolutionary biology and comparative studies with Caenorhabditis elegans. While an existing genome draft facilitated the identification of several genes controlling various developmental processes, its high degree of fragmentation complicated virtually all genomic analyses. Here, we present a de novo genome assembly from single-molecule, long-read sequencing data consisting of 135 P. pacificus contigs. When combined with a genetic linkage map, 99% of the assembly could be ordered and oriented into six chromosomes. This allowed us to robustly characterize chromosomal patterns of gene density, repeat content, nucleotide diversity, linkage disequilibrium, and macrosynteny in P. pacificus. Despite widespread conservation of synteny between P. pacificus and C. elegans, we identified one major translocation from an autosome to the sex chromosome in the lineage leading to C. elegans. This highlights the potential of the chromosome-scale assembly for future genomic studies of P. pacificus.
Understanding how new species form requires investigation of evolutionary forces that cause phenotypic and genotypic changes among populations. However, the mechanisms underlying speciation vary and little is known about whether genomes diversify in the same ways in parallel at the incipient scale. We address this using the nematode, Pristionchus pacificus, which resides at an interesting point on the speciation continuum (distinct evolutionary lineages without reproductive isolation), and inhabits heterogeneous environments subject to divergent environmental pressures. Using whole genome re-sequencing of 264 strains, we estimate FST to identify outlier regions of extraordinary differentiation (∼1.725 Mb of the 172.5 Mb genome). We find evidence for shared divergent genomic regions occurring at a higher frequency than expected by chance among populations of the same evolutionary lineage. We use allele frequency spectra to find that, among lineages, 53% of divergent regions are consistent with adaptive selection, whereas 24% and 23% of such regions suggest background selection and restricted gene flow, respectively. In contrast, among populations from the same lineage, similar proportions (34-48%) of divergent regions correspond to adaptive selection and restricted gene flow, whereas 13-22% suggest background selection. Because speciation often involves phenotypic and genomic divergence, we also evaluate phenotypic variation, focusing on pH tolerance, which we find is diverging in a manner corresponding to environmental differences among populations. Taking a genome-wide association approach, we functionally validate a significant genotype-phenotype association for this trait. Our results are consistent with P. pacificus undergoing heterogeneous genotypic and phenotypic diversification related to both evolutionary and environmental processes.
Summary Dauer formation, a major nematode survival strategy, represents a model for small-molecule regulation of metazoan development [1–10]. Free-living nematodes excrete dauer-inducing pheromones that have been assumed to target conspecifics of the same genotype [9, 11]. However, recent studies in Pristionchus pacificus revealed that the dauer pheromone of some strains affects conspecifics of other genotypes more strongly than individuals of the same genotype [12]. To elucidate the mechanistic basis for this intriguing cross-preference, we compared six P. pacificus wild isolates to determine the chemical composition of their dauer-inducing metabolomes and responses to individual pheromone components. We found that these isolates produce dauer pheromone blends of different composition and respond differently to individual pheromone components. Strikingly, there is no correlation between production of and dauer response to a specific compound in individual strains. Specifically, pheromone components that are abundantly produced by one genotype induce dauer formation in other genotypes, but not necessarily in the abundant producer. Furthermore, some genotypes respond to pheromone components they do not produce themselves. These results support a model of intraspecific competition in nematode dauer formation. Indeed, we observed intraspecific competition among sympatric strains in a novel experimental assay, suggesting a new role of small molecules in nematode ecology.
BackgroundUnicellular dinoflagellates are an important group of primary producers within the marine plankton community. Many of these species are capable of forming harmful algae blooms (HABs) and of producing potent phycotoxins, thereby causing deleterious impacts on their environment and posing a threat to human health. The recently discovered toxigenic dinoflagellate Azadinium spinosum is known to produce azaspiracid toxins. These toxins are most likely produced by polyketide synthases (PKS). Recently, PKS I-like transcripts have been identified in a number of dinoflagellate species. Despite the global distribution of A. spinosum, little is known about molecular features. In this study, we investigate the genomic and transcriptomic features of A. spinosum with a focus on polyketide synthesis and PKS evolution.ResultsWe identify orphan and homologous genes by comparing the transcriptome data of A. spinosum with a diverse set of 18 other dinoflagellates, five further species out of the Rhizaria Alveolate Stramelopile (RAS)-group, and one representative from the Plantae. The number of orphan genes in the analysed dinoflagellate species averaged 27%. In contrast, within the A. spinosum transcriptome, we discovered 12,661 orphan transcripts (18%). The dinoflagellates toxins known as azaspiracids (AZAs) are structurally polyethers; we therefore analyse the transcriptome of A. spinosum with respect to polyketide synthases (PKSs), the primary biosynthetic enzymes in polyketide synthesis. We find all the genes thought to be potentially essential for polyketide toxin synthesis to be expressed in A. spinosum, whose PKS transcripts fall into the dinoflagellate sub-clade in PKS evolution.ConclusionsOverall, we demonstrate that the number of orphan genes in the A. spinosum genome is relatively small compared to other dinoflagellate species. In addition, all PKS domains needed to produce the azaspiracid carbon backbone are present in A. spinosum. Our study underscores the extraordinary evolution of such gene clusters and, in particular, supports the proposed structural and functional paradigm for PKS Type I genes in dinoflagellates.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-014-1205-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.