The chalcogen bond is a nonclassical σ-hole-based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found in organic compounds, including 2D aromatics, but has so far never been observed in 3D aromatic inorganic boron hydrides. Thiaboranes, harboring a sulfur heteroatom in the icosahedral cage, are candidates for the formation of chalcogen bonds. The phenyl-substituted thiaborane, synthesized and crystalized in this study, forms sulfur⋅⋅⋅π type chalcogen bonds. Quantum chemical analysis revealed that these interactions are considerably stronger than both in their organic counterparts and in the known halogen bond. The reason is the existence of a highly positive σ-hole on the positively charged sulfur atom. This discovery expands the possibilities of applying substituted boron clusters in crystal engineering and drug design.
A density functional study at the BP86/AE1 level is presented for the cobalt bis(dicarbollide) ion [3-Co-(1,2-C2B9H11)2]- (1) and selected isomers and rotamers thereof. Rotation of the two dicarbollide moieties with respect to each other is facile, as judged by the small energetic separation of the three rotamers located (within 11 kJ mol(-1)) and by the low barriers for their interconversion (at most 41 kJ mol(-1)). Among the isomers differing in carbon atom positions that contain two equivalent dicarbollide ligands, the 1,7 ("carbon apart") form [2-Co-(1,7-C2B9H11)2]- is the most stable, 121 kJ mol(-1) below 1. The electronic structure of 1 is characterized in terms of molecular orbitals, population analysis, and excitation energies from time-dependent density functional theory, relevant to UV/Vis spectroscopy. Experimental 11B NMR chemical shifts of 1 are reproduced to better than 5 ppm at the GIAO-B3LYP/II' level, and the computed delta(11B) values are only little affected by rotational averaging or the presence of a polarizable continuum. Larger such effects are found for the as-yet unknown 59Co chemical shift, for which a value in the range between -1800 and -2400 ppm is predicted. Even though the accuracy achieved for the theoretical delta(11B) values is somewhat lower than that for heteroboranes at conventional ab initio levels, the level of density functional employed can afford qualitatively reliable chemical shifts, which can be useful in assignments and structural refinements of heteroboranes containing transition metal.
The p-carborane cluster analogue of p-mercaptobenzoic acid, 1-HS-12-COOH-1,12-C 2 B 10 H 10 , has been synthesized and characterized using nuclear magnetic resonance spectroscopy, single-crystal X-ray diffraction analysis, quantum-chemical calculations, and scanning tunneling microscopy. The single-crystal structure and selected packing aspects are discussed and presented in comparison with the two-dimensional periodic arrangements. Scanning tunneling micrographs, recorded under ambient conditions, are used to compare pure monolayers of 1-HS-1,12-C 2 B 10 H 11 to coadsorbed monolayers of both the parental precursor and carboxyl-functionalized pcarboranethiolate on Au{111}. Monolayers of both constituents are further characterized by X-ray photoelectron spectroscopy, which shows good agreement between the stoichiometry of each pure monolayer and the nominal stoichiometries of the respective molecules. Results indicate that most of the molecules of both derivatives adsorb as thiolates but that a small fraction of each adsorbs as thiols, without complete SH bond scission, and consequently are labile relative to desorption. Wetting-angle measurements confirm the hydrophilic character of monolayers containing the carboxylic acid constituents. Mixed self-assembled monolayers with functionalized constituents of high axial symmetry provide a convenient basis for grafting two-and three-dimensional structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.