Background:The anti-TB prodrugs isoxyl (ISO) and thiacetazone (TAC) inhibit mycolic acid biosynthesis. Results: We show that ISO and TAC both target the dehydration step of the FAS-II elongation system. Conclusion: ISO and TAC share the same mode of action. Significance: ISO and TAC are the first antibiotics reported to target the FAS-II dehydratase(s) of Mycobacterium tuberculosis.
MmpL3 is an inner membrane transporter of Mycobacterium tuberculosis responsible for the export of trehalose momomycolate, a precursor of the mycobacterial outer membrane component trehalose dimycolate (TDM), as well as mycolic acids bound to arabinogalactan. MmpL3 represents an emerging target for tuberculosis therapy. In this paper, we describe the construction and characterization of an mmpL3 knockdown strain of M. tuberculosis. Downregulation of mmpL3 led to a stop in bacterial division and rapid cell death, preceded by the accumulation of TDM precursors. MmpL3 was also shown to be essential for growth in monocyte-derived human macrophages. Using RNA-seq we also found that MmpL3 depletion caused up-regulation of 47 genes and down-regulation of 23 genes (at least 3-fold change and false discovery rate ≤1%). Several genes related to osmoprotection and metal homeostasis were induced, while several genes related to energy production and mycolic acids biosynthesis were repressed suggesting that inability to synthesize a correct outer membrane leads to changes in cellular permeability and a metabolic downshift.
A series of isoniazid derivatives bearing a phenolic or heteroaromatic coupled frame were obtained by mechanochemical means. Their pH stability and their structural (conformer/isomer) analysis were checked. The activity of prepared derivatives against Mycobacterium tuberculosis cell growth was evaluated. Some compounds such as phenolic hydrazine 1a and almost all heteroaromatic ones, especially 2, 5 and 7, are more active than isoniazid, and their activity against some M. tuberculosis MDR clinical isolates was determined. Compounds 1a and 7 present a selectivity index >1400 evaluated on MRC5 human fibroblast cells. The mechanism of action of selected hydrazones was demonstrated to block mycolic acid synthesis due to InhA inhibition inside the mycobacterial cell.
Mycolic acids are the hallmark of the cell envelope in mycobacteria, which include the important human pathogens and Mycolic acids are very long C60-C90 α-alkyl β-hydroxy fatty acids having a variety of functional groups on their hydrocarbon chain that define several mycolate types. Mycobacteria also produce an unusually large number of putative epoxide hydrolases, but the physiological functions of these enzymes are still unclear. Here, we report that the mycobacterial epoxide hydrolase EphD is involved in mycolic acid metabolism. We found that orthologs of EphD from and are functional epoxide hydrolases, cleaving a lipophilic substrate, 9,10--epoxystearic acid, and forming a vicinal diol. The results of EphD overproduction in and BCG Δ strains producing epoxymycolic acids indicated that EphD is involved in the metabolism of these forms of mycolates in both fast- and slow-growing mycobacteria. Moreover, using MALDI-TOF-MS and H NMR spectroscopy of mycolic acids and lipids isolated from EphD-overproducing, we identified new oxygenated mycolic acid species that accumulated during epoxymycolate depletion. Disruption of the gene in specifically impaired the synthesis of ketomycolates and caused accumulation of their precursor, hydroxymycolate, indicating either direct or indirect involvement of EphD in ketomycolate biosynthesis. Our results clearly indicate that EphD plays a role in metabolism of oxygenated mycolic acids in mycobacteria.
A series of fluorene-based derivatives was synthesized and evaluated for inhibiting both InhA and Mycobacterium tuberculosis growth. These compounds were inspired by the previously reported Genz-10850 molecule, a good InhA inhibitor, but with a poor activity against M. tuberculosis growth. Structure-activity relationships were performed by introducing the following chemical modifications: 1) the piperazine ring; 2) the amide group; 3) the aryl moiety; and 4) the fluorene moiety. Among these new derivatives, one of them was more effective against both the InhA activity and mycobacterial growth, compared to the hit compound. Docking studies were also performed to rationalize activities of these derivatives. Furthermore, we showed for the first time that efflux pump inhibitors potentiated the efficacy of Genz-10850 (GEQ) derivatives against M. tuberculosis growth, demonstrating that these compounds could be substrates of some efflux pumps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.