Background:Invasive fungal infections are often diagnosed by histopathology without identification of the causative fungi, which show significantly different antifungal susceptibilities.Aims:To establish and evaluate a system of two seminested polymerase chain reaction (PCR) assays to identify and discriminate between agents of aspergillosis and mucormycosis in paraffin wax embedded tissue samples.Methods:DNA of 52 blinded samples from five different centres was extracted and used as a template in two PCR assays targeting the mitochondrial aspergillosis DNA and the 18S ribosomal DNA of zygomycetes.Results:Specific fungal DNA was identified in 27 of 44 samples in accordance with a histopathological diagnosis of zygomycosis or aspergillosis, respectively.Aspergillus fumigatusDNA was amplified from one specimen of zygomycosis (diagnosed by histopathology). In four of 16 PCR negative samples no human DNA was amplified, possibly as a result of the destruction of DNA before paraffin wax embedding. In addition, eight samples from clinically suspected fungal infections (without histopathological proof) were examined. The two PCR assays detected a concomitant infection withAbsidia corymbiferaandA fumigatusin one, and infections withRhizopus arrhizusandA fumigatusin another two cases.Conclusions:The two seminested PCR assays described here can support a histopathological diagnosis of mucormycosis or aspergillosis, and can identify the infective agent, thereby optimising antifungal treatment.
Objective To foster trial‐readiness of coenzyme Q8A (COQ8A)‐ataxia, we map the clinicogenetic, molecular, and neuroimaging spectrum of COQ8A‐ataxia in a large worldwide cohort, and provide first progression data, including treatment response to coenzyme Q10 (CoQ10). Methods Cross‐modal analysis of a multicenter cohort of 59 COQ8A patients, including genotype–phenotype correlations, 3D‐protein modeling, in vitro mutation analyses, magnetic resonance imaging (MRI) markers, disease progression, and CoQ10 response data. Results Fifty‐nine patients (39 novel) with 44 pathogenic COQ8A variants (18 novel) were identified. Missense variants demonstrated a pleiotropic range of detrimental effects upon protein modeling and in vitro analysis of purified variants. COQ8A‐ataxia presented as variable multisystemic, early‐onset cerebellar ataxia, with complicating features ranging from epilepsy (32%) and cognitive impairment (49%) to exercise intolerance (25%) and hyperkinetic movement disorders (41%), including dystonia and myoclonus as presenting symptoms. Multisystemic involvement was more prevalent in missense than biallelic loss‐of‐function variants (82–93% vs 53%; p = 0.029). Cerebellar atrophy was universal on MRI (100%), with cerebral atrophy or dentate and pontine T2 hyperintensities observed in 28%. Cross‐sectional (n = 34) and longitudinal (n = 7) assessments consistently indicated mild‐to‐moderate progression of ataxia (SARA: 0.45/year). CoQ10 treatment led to improvement by clinical report in 14 of 30 patients, and by quantitative longitudinal assessments in 8 of 11 patients (SARA: −0.81/year). Explorative sample size calculations indicate that ≥48 patients per arm may suffice to demonstrate efficacy for interventions that reduce progression by 50%. Interpretation This study provides a deeper understanding of the disease, and paves the way toward large‐scale natural history studies and treatment trials in COQ8A‐ataxia. ANN NEUROL 2020;88:251–263
Aspergillosis and mucormycosis are the most common mold infections in patients with hematological malignancies. Infections caused by species of the genus Aspergillus and the order Mucorales require different antifungal treatments depending on the in vitro susceptibility of the causative strain. Cultures from biopsy specimens frequently do not grow fungal pathogens, even from histopathologically proven cases of invasive fungal infection. Two seminested PCR assays were evaluated by amplifying DNA of zygomycetes and Aspergillus spp. from organ biopsies of 21 immunocompromised patients. The PCR assays correctly identified five cases of invasive aspergillosis and six cases of mucormycosis. They showed evidence of double mold infection in two cases. Both assays were negative in five negative controls and in two patients with yeast infections. Sequencing of the PCR products was in accordance with culture results in all culture-positive cases. In six patients without positive cultures but with positive histopathology, sequencing suggested a causative organism. Detection of fungal DNA from biopsy specimens allows rapid identification of the causative organism of invasive aspergillosis and mucormycosis. The use of these PCR assays may allow guided antifungal treatment in patients with invasive mold infections.
A conventional nested PCR and a real-time LightCycler PCR assay for detection of Coccidioides posadasii DNA were designed and tested in 120 clinical strains. These had been isolated from 114 patients within 10 years in Monterrey, Nuevo Leon, Mexico, known to be endemic for coccidioidomycosis. The gene encoding the specific antigen 2/proline-rich antigen (Ag2/PRA) was used as a target. All strains were correctly identified, whereas DNA from related members of the family Onygenaceae remained negative. Melting curve analysis by LightCycler and sequencing of the 526-bp product of the first PCR demonstrated either 100% identity to the GenBank sequence of the Silveira strain, now known to be C. posadasii (accession number AF013256), or a single silent mutation at position 1228. Length determination of two microsatellite-containing loci (GAC and 621) identified all 120 isolates as C. posadasii. Specific DNA was amplified by conventional nested PCR from three microscopically spherule-positive paraffin-embedded tissue samples, whereas 20 human tissue samples positive for other dimorphic fungi remained negative. Additionally, the safety of each step of a modified commercially available DNA extraction procedure was evaluated by using 10 strains. At least three steps of the protocol were demonstrated to sufficiently kill arthroconidia. This safe procedure is applicable to cultures and to clinical specimens.
In the past two years an enormous amount of molecular, genetic, metabolomic and mechanistic data on the hostbacterium interaction, a healthy gut microbiota and a possible role for probiotics in Clostridium difficile infection (CDI) has been accumulated. Also, new hypervirulent strains of C. difficile have emerged. Yet, clinical trials in CDI have been less promising than in antibiotic associated diarrhoea in general, with more meta-analysis than primary papers on CDI-clinical-trials. The fact that C. difficile is a spore former, producing at least three different toxins has not yet been incorporated in the rational design of probiotics for (recurrent) CDI. Here we postulate that the plethora of effects of C. difficile and the vast amount of data on the role of commensal gut residents and probiotics point towards a multistrain mixture of probiotics to reduce CDI, but also to limit (nosocomial) transmission and/or endogenous reinfection. On the basis of a retrospective chart review of a series of ten CDI patients where recurrence was expected, all patients on adjunctive probiotic therapy with multistrain cocktail (Ecologic®AAD/OMNiBiOTiC® 10) showed complete clinical resolution. This result, and recent success in faecal transplants in CDI treatment, are supportive for the rational design of multistrain probiotics for CDI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.