OBJECTIVES: Maternal smoking during pregnancy is an established risk factor for sudden unexpected infant death (SUID). Here, we aim to investigate the effects of maternal prepregnancy smoking, reduction during pregnancy, and smoking during pregnancy on SUID rates. METHODS: We analyzed the Centers for Disease Control and Prevention Birth Cohort Linked Birth/Infant Death Data Set (2007-2011: 20 685 463 births and 19 127 SUIDs). SUID was defined as deaths at ,1 year of age with International Classification of Diseases, 10th Revision codes R95 (sudden infant death syndrome), R99 (ill-defined or unknown cause), or W75 (accidental suffocation or strangulation in bed). RESULTS: SUID risk more than doubled (adjusted odds ratio [aOR] = 2.44; 95% confidence interval [CI] 2.31-2.57) with any maternal smoking during pregnancy and increased twofold between no smoking and smoking 1 cigarette daily throughout pregnancy. For 1 to 20 cigarettes per day, the probability of SUID increased linearly, with each additional cigarette smoked per day increasing the odds by 0.07 from 1 to 20 cigarettes; beyond 20 cigarettes, the relationship plateaued. Mothers who quit or reduced their smoking decreased their odds compared with those who continued smoking (reduced: aOR = 0.88, 95% CI 0.79-0.98; quit: aOR = 0.77, 95% CI 0.67-0.87). If we assume causality, 22% of SUIDs in the United States can be directly attributed to maternal smoking during pregnancy. CONCLUSIONS: These data support the need for smoking cessation before pregnancy. If no women smoked in pregnancy, SUID rates in the United States could be reduced substantially.
The coordination of swallowing with breathing, in particular inspiration, is essential for homeostasis in most organisms. While much has been learned about the neuronal network critical for inspiration in mammals, the pre–Bötzinger complex (preBötC), little is known about how this network interacts with swallowing. Here we activate within the preBötC excitatory neurons (defined as Vglut2 and Sst neurons) and inhibitory neurons (defined as Vgat neurons) and inhibit and activate neurons defined by the transcription factor Dbx1 to gain an understanding of the coordination between the preBötC and swallow behavior. We found that stimulating inhibitory preBötC neurons did not mimic the premature shutdown of inspiratory activity caused by water swallows, suggesting that swallow-induced suppression of inspiratory activity is not directly mediated by the inhibitory neurons in the preBötC. By contrast, stimulation of preBötC Dbx1 neurons delayed laryngeal closure of the swallow sequence. Inhibition of Dbx1 neurons increased laryngeal closure duration and stimulation of Sst neurons pushed swallow occurrence to later in the respiratory cycle, suggesting that excitatory neurons from the preBötC connect to the laryngeal motoneurons and contribute to the timing of swallowing. Interestingly, the delayed swallow sequence was also caused by chronic intermittent hypoxia (CIH), a model for sleep apnea, which is 1) known to destabilize inspiratory activity and 2) associated with dysphagia. This delay was not present when inhibiting Dbx1 neurons. We propose that a stable preBötC is essential for normal swallow pattern generation and disruption may contribute to the dysphagia seen in obstructive sleep apnea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.