Abstract. Predicting links between the nodes of a graph has become an important Data Mining task because of its direct applications to biology, social networking, communication surveillance, and other domains. Recent literature in time-series link prediction has shown that the Vector Auto Regression (VAR) technique is one of the most accurate for this problem. In this study, we apply Support Vector Machine (SVM) to improve the VAR technique that uses an unweighted adjacency matrix along with 5 matrices: Common Neighbor (CN), Adamic-Adar (AA), Jaccard's Coefficient (JC), Preferential Attachment (PA), and Research Allocation Index (RA). A DBLP dataset covering the years from 2003 until 2013 was collected and transformed into time-sliced graph representations. The appropriate matrices were computed from these graphs, mapped to the feature space, and then used to build baseline VAR models with lag of 2 and some corresponding SVM classifiers. Using the Area Under the Receiver Operating Characteristic Curve (AUC-ROC) as the main fitness metric, the average result of 82.04% for the VAR was improved to 84.78% with SVM. Additional experiments to handle the highly imbalanced dataset by oversampling with SMOTE and undersampling with K-means clusters, however, did not improve the average AUC-ROC of the baseline SVM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.