Purpose To develop histology‐informed simulations of diffusion tensor cardiovascular magnetic resonance (DT‐CMR) for typical in‐vivo pulse sequences and determine their sensitivity to changes in extra‐cellular space (ECS) and other microstructural parameters. Methods We synthesised the DT‐CMR signal from Monte Carlo random walk simulations. The virtual tissue was based on porcine histology. The cells were thickened and then shrunk to modify ECS. We also created idealised geometries using cuboids in regular arrangement, matching the extra‐cellular volume fraction (ECV) of 16–40%. The simulated voxel size was 2.8 × 2.8 × 8.0 mm 3 for pulse sequences covering short and long diffusion times: Stejskal–Tanner pulsed‐gradient spin echo, second‐order motion‐compensated spin echo, and stimulated echo acquisition mode (STEAM), with clinically available gradient strengths. Results The primary diffusion tensor eigenvalue increases linearly with ECV at a similar rate for all simulated geometries. Mean diffusivity (MD) varies linearly, too, but is higher for the substrates with more uniformly distributed ECS. Fractional anisotropy (FA) for the histology‐based geometry is higher than the idealised geometry with low sensitivity to ECV, except for the long mixing time of the STEAM sequence. Varying the intra‐cellular diffusivity ( D IC ) results in large changes of MD and FA. Varying extra‐cellular diffusivity or using stronger gradients has minor effects on FA. Uncertainties of the primary eigenvector orientation are reduced using STEAM. Conclusions We found that the distribution of ECS has a measurable impact on DT‐CMR parameters. The observed sensitivity of MD and FA to ECV and D IC has potentially interesting applications for interpreting in‐vivo DT‐CMR parameters.
In this paper we present random walk based solutions to diffusion in semi-permeable layered media with varying diffusivity. We propose a novel transit model for solving the interaction of random walkers with a membrane. This hybrid model is based on treating the membrane permeability and the step change in diffusion coefficient as two interactions separated by an infinitesimally small layer. By conducting an extensive analytical flux analysis, the performance of our hybrid model is compared with a commonly used membrane transit model (reference model). Numerical simulations demonstrate the limitations of the reference model in dealing with step changes in diffusivity and show the capability of the hybrid model to overcome this limitation and to offer substantial gains in computational efficiency. The suitability of both random walk transit models for the application to simulations of diffusion tensor cardiovascular magnetic resonance (DT-CMR) imaging is assessed in a histology-based domain relevant to DT-CMR. In order to demonstrate the usefulness of the new hybrid model for other possible applications, we also consider a larger range of permeabilities beyond those commonly found in biological tissues.
The energy needed to drive airflow through the trachea normally constitutes a minor component of the work of breathing. However, with progressive tracheal compression, patient subjective symptoms can include severe breathing difficulties. Many patients suffer multiple respiratory comorbidities and so it is important to assess compression effects when evaluating the need for surgery. This work describes the use of computational prediction to determine airflow resistance in compressed tracheal geometries reconstructed from a series of CT scans. Using energy flux analysis, the regions that contribute the most to airway resistance during inhalation are identified. The principal such region is where flow emerging from the zone of maximum constriction undergoes breakup and turbulent mixing. Secondary regions are also found below the tongue base and around the glottis, with overall airway resistance scaling nearly quadratically with flow rate. Since the anatomical extent of the imaged airway varied between scans-as commonly occurs with clinical data and when assessing reported differences between research studies-the effect of sub-glottic inflow truncation is considered. Analysis shows truncation alters the location of jet breakup and weakly influences the pattern of pressure recovery. Tests also show that placing a simple artificial glottis in the inflow to a truncated model can replicate patterns of energy loss in more extensive models, suggesting a means to assess sensitivity to domain truncation in tracheal airflow simulations.
Cardiac motion results in image artefacts and quantification errors in many cardiovascular magnetic resonance (CMR) techniques, including microstructural assessment using diffusion tensor cardiovascular magnetic resonance (DT-CMR). Here, we develop a CMR-compatible isolated perfused porcine heart model that allows comparison of data obtained in beating and arrested states. Ten porcine hearts (8/10 for protocol optimisation) were harvested using a donor heart retrieval protocol and transported to the remote CMR facility. Langendorff perfusion in a 3D-printed chamber and perfusion circuit re-established contraction. Hearts were imaged using cine, parametric mapping and STEAM DT-CMR at cardiac phases with the minimum and maximum wall thickness. High potassium and lithium perfusates were then used to arrest the heart in a slack and contracted state, respectively. Imaging was repeated in both arrested states. After imaging, tissue was removed for subsequent histology in a
Purpose To study the sensitivity of diffusion tensor cardiovascular magnetic resonance (DT‐CMR) to microvascular perfusion and changes in cell permeability. Methods Monte Carlo (MC) random walk simulations in the myocardium have been performed to simulate self‐diffusion of water molecules in histology‐based media with varying extracellular volume fraction (ECV) and permeable membranes. The effect of microvascular perfusion on simulations of the DT‐CMR signal has been incorporated by adding the contribution of particles traveling through an anisotropic capillary network to the diffusion signal. The simulations have been performed considering three pulse sequences with clinical gradient strengths: monopolar stimulated echo acquisition mode (STEAM), monopolar pulsed‐gradient spin echo (PGSE), and second‐order motion‐compensated spin echo (MCSE). Results Reducing ECV intensifies the diffusion restriction and incorporating membrane permeability reduces the anisotropy of the diffusion tensor. Widening the intercapillary velocity distribution results in increased measured diffusion along the cardiomyocytes long axis when the capillary networks are anisotropic. Perfusion amplifies the mean diffusivity for STEAM while the opposite is observed for short diffusion encoding time sequences (PGSE and MCSE). Conclusion The effect of perfusion on the measured diffusion tensor is reduced using an increased reference b‐value. Our results pave the way for characterization of the response of DT‐CMR to microstructural changes underlying cardiac pathology and highlight the higher sensitivity of STEAM to permeability and microvascular circulation due to its longer diffusion encoding time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.