Background Compilation of different morphological lesion signatures is characteristic of renal pathology. Previous studies have documented the potential value of artificial intelligence (AI) in recognizing relatively clear-cut glomerular structures and patterns, such as segmental or global sclerosis or mesangial hypercellularity. This study aimed to test the capacity of deep learning algorithms to recognize complex glomerular structural changes that reflect common diagnostic dilemmas in nephropathology. Methods For this purpose, we defined nine classes of glomerular morphological patterns and trained twelve convolutional neuronal network (CNN) models on these. The two-step training process was done on a first dataset defined by an expert nephropathologist (12,253 images) and a second consensus dataset (11,142 images) defined by three experts in the field. Results The efficacy of CNN training was evaluated using another set with 180 consensus images, showing convincingly good classification results (kappa-values 0.838–0.938). Furthermore, we elucidated the image areas decisive for CNN-based decision making by class activation maps. Finally, we demonstrated that the algorithm could decipher glomerular disease patterns coinciding in a single glomerulus (e.g. necrosis along with mesangial and endocapillary hypercellularity). Conclusions In summary, our model, focusing on glomerular lesions detectable by conventional microscopy, is the first sui generis to deploy deep learning as a reliable and promising tool in recognition of even discrete and/or overlapping morphological changes. Our results provide a stimulus for ongoing projects that integrate further input levels next to morphology (such as immunohistochemistry, electron microscopy, and clinical information) to develop a novel tool applicable for routine diagnostic nephropathology.
Introduction: This study investigates whether it is possible to predict a final diagnosis based on a written nephropathological description—as a surrogate for image analysis—using various NLP methods. Methods: For this work, 1107 unlabelled nephropathological reports were included. (i) First, after separating each report into its microscopic description and diagnosis section, the diagnosis sections were clustered unsupervised to less than 20 diagnostic groups using different clustering techniques. (ii) Second, different text classification methods were used to predict the diagnostic group based on the microscopic description section. Results: The best clustering results (i) could be achieved with HDBSCAN, using BoW-based feature extraction methods. Based on keywords, these clusters can be mapped to certain diagnostic groups. A transformer encoder-based approach as well as an SVM worked best regarding diagnosis prediction based on the histomorphological description (ii). Certain diagnosis groups reached F1-scores of up to 0.892 while others achieved weak classification metrics. Conclusion: While textual morphological description alone enables retrieving the correct diagnosis for some entities, it does not work sufficiently for other entities. This is in accordance with a previous image analysis study on glomerular change patterns, where some diagnoses are associated with one pattern, but for others, there exists a complex pattern combination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.