We introduce an interface/coupling procedure for hyperbolic problems posed on time-dependent curved multi-domains. First, we transform the problem from Cartesian to boundary-conforming curvilinear coordinates and apply the energy method to derive well-posed and conservative interface conditions. Next, we discretize the problem in space and time by employing finite difference operators that satisfy a summation-by-parts rule. The interface condition is imposed weakly using a penalty formulation. We show how to formulate the penalty operators such that the coupling procedure is automatically adjusted to the movements and deformations of the interface, while both stability and conservation conditions are respected.The developed techniques are illustrated by performing numerical experiments on the linearized Euler equations and the Maxwell equations. The results corroborate the stability and accuracy of the fully discrete approximations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.