In recent years, policy learning methods using either reinforcement or imitation have made significant progress. However, both techniques still suffer from being computationally expensive and requiring large amounts of training data. This problem is especially prevalent in real-world robotic manipulation tasks, where access to ground truth scene features is not available and policies are instead learned from raw camera observations. In this paper, we demonstrate the efficacy of learning image keypoints via the Dense Correspondence pretext task for downstream policy learning. Extending prior work to challenging multi-object scenes, we show that our model can be trained to deal with important problems in representation learning, primarily scale-invariance and occlusion. We evaluate our approach on diverse robot manipulation tasks, compare it to other visual representation learning approaches, and demonstrate its flexibility and effectiveness for sample-efficient policy learning.
We present MDP Playground, a testbed for Reinforcement Learning (RL) agents with dimensions of hardness that can be controlled independently to challenge agents in different ways and obtain varying degrees of hardness in toy and complex RL environments. We consider and allow control over a wide variety of dimensions, including delayed rewards, sequence lengths, reward density, stochasticity, image representations, irrelevant features, time unit, action range and more. We define a parameterised collection of fast-to-run toy environments in OpenAI Gym by varying these dimensions and propose to use these to understand agents better. We then show how to design experiments using MDP Playground to gain insights on the toy environments. We also provide wrappers that can inject many of these dimensions into any Gym environment. We experiment with these wrappers on Atari and Mujoco to allow for understanding the effects of these dimensions on environments that are more complex than the toy environments. We also compare the effect of the dimensions on the toy and complex environments. Finally, we show how to use MDP Playground to debug agents, to study the interaction of multiple dimensions and describe further use-cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.