This paper studies discrete-time control systems subject to average data-rate limits. We focus on a situation where a noisy linear system has been designed assuming transparent feedback and, due to implementation constraints, a source-coding scheme (with unity signal transfer function) has to be deployed in the feedback path. For this situation, and by focusing on a class of source-coding schemes built around entropy coded dithered quantizers, we develop a framework to deal with average data-rate constraints in a tractable manner that combines ideas from both information and control theories. As an illustration of the uses of our framework, we apply it to study the interplay between stability and average data-rates in the considered architecture. It is shown that the proposed class of coding schemes can achieve mean square stability at average data-rates that are, at most, 1.254 bits per sample away from the absolute minimum rate for stability established by Nair and Evans. This rate penalty is compensated by the simplicity of our approach.
We improve the existing achievable rate regions for causal and for zero-delay source coding of stationary Gaussian sources under an average mean squared error (MSE) distortion measure. To begin with, we find a closed-form expression for the information-theoretic causal rate-distortion function (RDF) under such distortion measure, denoted by R , where R(D) denotes Shannon's RDF. Two of these bounds are strictly smaller than 0.5 bits/sample at all rates. These bounds differ from one another in their tightness and ease of evaluation; the tighter the bound, the more involved its evaluation.We then show that, for any source spectral density and any positive distortion D ≤ σ 2 x , R it c (D) can be realized by an AWGN channel surrounded by a unique set of causal pre-, post-, and feedback filters. We show that finding such filters constitutes a convex optimization problem. In order to solve the latter, we propose an iterative optimization procedure that yields the optimal filters and is guaranteed to converge to R it c (D). Finally, by establishing a connection to feedback quantization we design a causal and a zerodelay coding scheme which, for Gaussian sources, achieves an operational rate lower than R it c (D)+0.254
Abstract-We study a control architecture for linear timeinvariant plants with random disturbances and where a network is placed between the controller output and the plant input. The network imposes a constraint on the expected bit-rate and is affected by random i.i.d. dropouts. Dropout-rates and acknowledgments of receipt are not available at the controller side. To achieve robustness with respect to i.i.d. dropouts, the controller transmits data packets containing quantized plant input predictions. These are provided by an appropriate optimal entropy coded dithered lattice vector quantizer. Within this context, we derive stochastic stability results and provide a noiseshaping model of the closed loop system. This model is employed for performance analysis by using rate-distortion theory.
Abstract-We study state estimation via wireless sensors over fading channels. Packet loss probabilities depend upon time-varying channel gains, packet lengths and transmission power levels of the sensors. Measurements are coded into packets by using either independent coding or distributed zero-error coding. At the gateway, a time-varying Kalman filter uses the received packets to provide the state estimates. To trade sensor energy expenditure for state estimation accuracy, we develop a predictive control algorithm which, in an online fashion, determines the transmission power levels and codebooks to be used by the sensors. To further conserve sensor energy, the controller is located at the gateway and sends coarsely quantized power increment commands, only whenever deemed necessary. Simulations based on real channel measurements illustrate that the proposed method gives excellent results.
Abstract-In this paper, we derive analytical expressions for the central and side quantizers which, under high-resolution assumptions, minimize the expected distortion of a symmetric multiple-description lattice vector quantization (MD-LVQ) system subject to entropy constraints on the side descriptions for given packet-loss probabilities. We consider a special case of the general -channel symmetric multiple-description problem where only a single parameter controls the redundancy tradeoffs between the central and the side distortions. Previous work on two-channel MD-LVQ showed that the distortions of the side quantizers can be expressed through the normalized second moment of a sphere. We show here that this is also the case for three-channel MD-LVQ. Furthermore, we conjecture that this is true for the general -channel MD-LVQ. For given source, target rate, and packet-loss probabilities we find the optimal number of descriptions and construct the MD-LVQ system that minimizes the expected distortion. We verify theoretical expressions by numerical simulations and show in a practical setup that significant performance improvements can be achieved over state-of-the-art two-channel MD-LVQ by using three-channel MD-LVQ.Index Terms-High-rate quantization, lattice quantization, multiple-description coding (MDC), vector quantization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.