Thermophilic and hyperthermophilic Archaea and Bacteria have been isolated from marine hydrothermal systems, heated sediments, continental solfataras, hot springs, water heaters, and industrial waste. They catalyze a tremendous array of widely varying metabolic processes. As determined in the laboratory, electron donors in thermophilic and hyperthermophilic microbial redox reactions include H2, Fe(2+), H2S, S, S2O3(2-), S4O6(2-), sulfide minerals, CH4, various mono-, di-, and hydroxy-carboxylic acids, alcohols, amino acids, and complex organic substrates; electron acceptors include O2, Fe(3+), CO2, CO, NO3(-), NO2(-), NO, N2O, SO4(2-), SO3(2-), S2O3(2-), and S. Although many assimilatory and dissimilatory metabolic reactions have been identified for these groups of microorganisms, little attention has been paid to the energetics of these reactions. In this review, standard molal Gibbs free energies (DeltaGr(0)) as a function of temperature to 200 degrees C are tabulated for 370 organic and inorganic redox, disproportionation, dissociation, hydrolysis, and solubility reactions directly or indirectly involved in microbial metabolism. To calculate values of DeltaGr(0) for these and countless other reactions, the apparent standard molal Gibbs free energies of formation (DeltaG(0)) at temperatures to 200 degrees C are given for 307 solids, liquids, gases, and aqueous solutes. It is shown that values of DeltaGr(0) for many microbially mediated reactions are highly temperature dependent, and that adopting values determined at 25 degrees C for systems at elevated temperatures introduces significant and unnecessary errors. The metabolic processes considered here involve compounds that belong to the following chemical systems: H-O, H-O-N, H-O-S, H-O-N-S, H-O-C(inorganic), H-O-C, H-O-N-C, H-O-S-C, H-O-N-S-C(amino acids), H-O-S-C-metals/minerals, and H-O-P. For four metabolic reactions of particular interest in thermophily and hyperthermophily (knallgas reaction, anaerobic sulfur and nitrate reduction, and autotrophic methanogenesis), values of the overall Gibbs free energy (DeltaGr) as a function of temperature are calculated for a wide range of chemical compositions likely to be present in near-surface and deep hydrothermal and geothermal systems.
Genus assignment is fundamental in the characterization of microbes, yet there is currently no unambiguous way to demarcate genera solely using standard genomic relatedness indices. Here, we propose an approach to demarcate genera that relies on the combined use of the average nucleotide identity, genome alignment fraction, and the distinction between type- and non-type species. More than 3,500 genomes representing type strains of species from >850 genera of either bacterial or archaeal lineages were tested. Over 140 genera were analyzed in detail within the taxonomic context of order/family. Significant genomic differences between members of a genus and type species of other genera in the same order/family were conserved in 94% of the cases. Nearly 90% (92% if polyphyletic genera are excluded) of the type strains were classified in agreement with current taxonomy. The 448 type strains that need reclassification directly impact 33% of the genera analyzed in detail. The results provide a first line of evidence that the combination of genomic indices provides added resolution to effectively demarcate genera within the taxonomic framework that is currently based on the 16S rRNA gene. We also identify the emergence of natural breakpoints at the genome level that can further help in the circumscription of taxa, increasing the proportion of directly impacted genera to at least 43% and pointing at inaccuracies on the use of the 16S rRNA gene as a taxonomic marker, despite its precision. Altogether, these results suggest that genomic coherence is an emergent property of genera in Bacteria and Archaea. IMPORTANCE In recent decades, the taxonomy of Bacteria and Archaea, and therefore genus designation, has been largely based on the use of a single ribosomal gene, the 16S rRNA gene, as a taxonomic marker. We propose an approach to delineate genera that excludes the direct use of the 16S rRNA gene and focuses on a standard genome relatedness index, the average nucleotide identity. Our findings are of importance to the microbiology community because the emergent properties of Bacteria and Archaea that are identified in this study will help assign genera with higher taxonomic resolution.
International audienceThe Mars Science Laboratory (MSL) has an instrument package capable of making measurements of past and present environmental conditions. The data generated may tell us if Mars is, or ever was, able to support life. However, the knowledge of Mars' past history and the geological processes most likely to preserve a record of that history remain sparse and, in some instances, ambiguous. Physical, chemical, and geological processes relevant to biosignature preservation on Earth, especially under conditions early in its history when microbial life predominated, are also imperfectly known. Here, we present the report of a working group chartered by the Co-Chairs of NASA's MSL Project Science Group, John P. Grotzinger and Michael A. Meyer, to review and evaluate potential for biosignature formation and preservation on Mars. Orbital images confirm that layered rocks achieved kilometer-scale thicknesses in some regions of ancient Mars. Clearly, interplays of sedimentation and erosional processes govern present-day exposures, and our understanding of these processes is incomplete. MSL can document and evaluate patterns of stratigraphic development as well as the sources of layered materials and their subsequent diagenesis. It can also document other potential biosignature repositories such as hydrothermal environments. These capabilities offer an unprecedented opportunity to decipher key aspects of the environmental evolution of Mars' early surface and aspects of the diagenetic processes that have operated since that time. Considering the MSL instrument payload package, we identified the following classes of biosignatures as within the MSL detection window: organism morphologies (cells, body fossils, casts), biofabrics (including microbial mats), diagnostic organic molecules, isotopic signatures, evidence of biomineralization and bioalteration, spatial patterns in chemistry, and biogenic gases. Of these, biogenic organic molecules and biogenic atmospheric gases are considered the most definitive and most readily detectable by MSL
Microbiological and geochemical surveys were conducted at three hot springs (Obsidian Pool, Sylvan Spring, and ‘Bison Pool’) in Yellowstone National Park (Wyoming, USA). Microbial community structure was investigated by polymerase chain reaction (PCR) amplification of 16S rRNA gene sequences from DNA extracted from sediments of each hot spring, followed by molecular cloning. Both bacterial and archaeal DNA was retrieved from all samples. No Euryarchaea were found, but diverse Crenarchaea exist in all three pools, particularly affiliating with deep‐branching, but uncultivated organisms. In addition, cloned DNA affiliating with the Desulphurococcales and Thermoproteales was identified, but the distribution of taxa differs in each hot spring. The bacterial community at all three locations is dominated by members of the Aquificales and Thermodesulfobacteriales, indicating that the ‘knallgas’ reaction (aerobic hydrogen oxidation) may be a central metabolism in these ecosystems. To provide geochemical context for the microbial community structures, energy‐yields for a number of chemolithoautotrophic reactions are provided for >80 sampling sites in Yellowstone, including Obsidian Pool, Sylvan Spring, and ‘Bison Pool’. This energy profile shows that the knallgas reaction is just one of many exergonic reactions in the Yellowstone hot springs, that energy‐yields for certain reactions can vary substantially from one site to the next, and that few of the demonstrated exergonic reactions are known to support microbial metabolism.
One of the most important classic and contemporary interests in biology is the connection between cellular composition and physiological function. Decades of research have allowed us to understand the detailed relationship between various cellular components and processes for individual species, and have uncovered common functionality across diverse species. However, there still remains the need for frameworks that can mechanistically predict the tradeoffs between cellular functions and elucidate and interpret average trends across species. Here we provide a comprehensive analysis of how cellular composition changes across the diversity of bacteria as connected with physiological function and metabolism, spanning five orders of magnitude in body size. We present an analysis of the trends with cell volume that covers shifts in genomic, protein, cellular envelope, RNA and ribosomal content. We show that trends in protein content are more complex than a simple proportionality with the overall genome size, and that the number of ribosomes is simply explained by cross-species shifts in biosynthesis requirements. Furthermore, we show that the largest and smallest bacteria are limited by physical space requirements. At the lower end of size, cell volume is dominated by DNA and protein content—the requirement for which predicts a lower limit on cell size that is in good agreement with the smallest observed bacteria. At the upper end of bacterial size, we have identified a point at which the number of ribosomes required for biosynthesis exceeds available cell volume. Between these limits we are able to discuss systematic and dramatic shifts in cellular composition. Much of our analysis is connected with the basic energetics of cells where we show that the scaling of metabolic rate is surprisingly superlinear with all cellular components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.