Smart systems have become key solutions for many application areas including autonomous farming. The trend we can see now in the smart systems is that they shift from single isolated autonomic and self-adaptive components to larger ecosystems of heavily cooperating components. This increases the reliability and often the cost-effectiveness of the system by replacing one big costly device with a number of smaller and cheaper ones. In this paper, we demonstrate the effect of synergistic collaboration among autonomic components in the domain of smart farming-in particular, the use-case we employ in the demonstration stems from the AFar-Cloud EU project. We exploit the concept of autonomic component ensembles to describe situation-dependent collaboration groups (so called ensembles). The paper shows how the autonomic component ensembles can easily capture complex collaboration rules and how they can include both controllable autonomic components (i.e. drones) and non-controllable environment agents (flocks of birds in our case). As part of the demonstration, we provide an open-source implementation that covers both the specification of the autonomic components and ensembles of the use case, and the discrete event simulation and real-time visualization of the use case. We believe this is useful not only to demonstrate the effectiveness of architectures of collaborative autonomic components for dealing with real-life tasks, but also to build further experiments in the domain. CCS CONCEPTS• Computer systems organization → Self-organizing autonomic computing; • Software and its engineering → Domain specific languages; • Applied computing → Agriculture.
Modern Cyber-physical Systems (CPS) include applications like smart traffic, smart agriculture, smart power grid, etc. Commonly, these systems are distributed and composed of end-user applications and microservices that typically run in the cloud. The connection with the physical world, which is inherent to CPS, brings the need to operate and respond in real-time. As the cloud becomes part of the computation loop, the real-time requirements have to be also reflected by the cloud. In this paper, we present an approach that provides soft real-time guarantees on the response time of services running in cloud and edge-cloud (i.e., cloud geographically close to the end-user), where these services are developed in high-level programming languages. In particular, we elaborate a method that allows us to predict the upper bound of the response time of a service when sharing the same computer with other services. Importantly, as our approach focuses on minimizing the impact on the developer of such services, it does not require any special programming model nor limits usage of common libraries, etc.
Smart system applications (SSAs) built on top of cyberphysical and socio-technical systems are increasingly composed of components that can work both autonomously and by cooperating with each other. Cooperating robots, fleets of cars and fleets of drones, emergency coordination systems are examples of SSAs. One approach to enable cooperation of SSAs is to form dynamic cooperation groups-ensembles-between components at runtime. Ensembles can be formed based on predefined rules that determine which components should be part of an ensemble based on their current state and the state of the environment (e.g., "group together 3 robots that are closer to the obstacle, their battery is sufficient and they would not be better used in another ensemble"). This is a computationally hard problem since all components are potential members of all possible ensembles at runtime. In our experience working with ensembles in several case studies the past years, using constraint programming to decide which ensembles should be formed does not scale for more than a limited number of components and ensembles. Also, the strict formulation in terms of hard/soft constraints does not easily permit for runtime self-adaptation via learning. This poses a serious limitation to the use of ensembles in large-scale and partially uncertain SSAs. To tackle this problem, in this paper we propose to recast the ensemble formation problem as a classification problem and use machine learning to efficiently form ensembles at scale.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.