Fiber Reinforced Polymers (FRPs) are increasingly popular building materials, mainly because of their high strength to weight ratio. Despite these beneficial properties, these composites are often fabricated in standardized mass production. This research aims to eliminate costly molds in order to simplify the fabrication and allow for a higher degree of customization. Complex three-dimensional shapes were instead achieved by a flat reinforcement, which was resin infused and curved folded into a spatial object before hardening. Structural stability was gained through geometries with closed cross-sections. To enable this, the resource-saving additive fabrication technique of tailored fiber placement (TFP) was chosen. This method allowed for precise fibers’ deposition, making a programmed anisotropic behavior of the material possible. Principles regarding the fiber placement were transferred from a biological role-model. Five functional stools were produced as demonstrators to prove the functionality and advantages of the explained system. Partially bio-based materials were applied to fabricate the stool models of natural fiber-reinforced polymer composites (NFRP). A parametric design tool for the global design and fiber layout generation was developed. As a result, varieties of customized components can be produced without increasing the design and manufacturing effort.
Building envelopes separate the confined interior world engineered for human comfort and indoor activity from the exterior world with its uncontainable climatic forces and man-made immission. In the future, active, sustainable and lightweight building skins are needed to serve as an adaptive interface to govern the building-physical interactions between these two worlds. This article provides conceptual and experimental results regarding the integration of ionic electroactive polymer sensors and actuators into fabric membranes. The ultimate goal is to use this technology for adaptive membrane building skins. These devices have attracted high interest from industry and academia due to their small actuation voltages, relatively large actuation and sensing responses and their flexible and soft mechanical characteristics. However, their complex manufacturing process, sophisticated material compositions and their environmental sensitivity have limited the application range until now. The article describes the potentials and limitations of employing such devices for two different adaptive building functionalities: first, as a means of ventilation control and humidity regulation by embedding small actuated apertures into a fabric membrane, and second, as flexible, energy-and cost-efficient distributed sensors for external load monitoring of such structures. The article focusses on designing, building and testing two experimental membrane demonstrators with integrated polymer actuators and sensors. It addresses the challenges encountered and draws conclusions for potential future optimization at the device and system level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.