Ball throwing velocity is essential for scoring goals in handball; the crucial question is how to develop throwing velocity in highly trained handball players. Therefore, this systematic review aims to summarize effective conditioning strategies to improve throwing velocity in elite male players and to perform a meta-analysis on which training system can provide the highest increase in throwing velocity. The literature was analyzed using the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) in PubMed, Scopus, and Web of Science. Thirteen studies (sample n = 174) were included: five resistance training studies, one core training study, one study on repeated shuffle sprint training with small-sided games, and one on eccentric overload training. Effect size comparison showed that resistance training is the most effective strategy for improving throwing velocity in elite handball players (d > 0.7). Core training showed a small effect (d = 0.35). Small-sided game (SSG) training showed different results, from a significant positive effect (d = 1.95) to a negative effect (d = –2.03), and eccentric overload training showed a negative effect (d = –0.15). Resistance training is the most effective strategy for improving throwing velocity in elite handball players, while core training and SSGs can improve throwing velocity in youth athletes. Due to the small number of studies focusing on elite handball players, there is a need for more studies on advanced resistance training methods, e.g., contrast, complex, ballistic training, because much greater demands are placed on handball performance assumptions.
Knowledge about the acute effects of supramaximal-loaded resistance exercises on muscle mechanical properties is scarce. Therefore, this study aimed to examine changes in dominant limb biceps femoris and vastus lateralis oscillation frequency and stiffness before and after high- and supramaximal-loaded front squats. Nineteen male handball players participated in the experimental session with a barbell front squat 1RM. The first set was performed at 70% of the 1RM for four repetitions, and the second and third sets were performed at 90%1RM in an eccentric–concentric or an eccentric-only manner at 120% of the 1RM for three repetitions. The handheld myometer was used for the measurement of the biceps femoris and vastus lateralis stiffness and the oscillation frequency of the dominant limb 5 min before and at the 5th and 10th min after front squats. A two-way ANOVA neither indicated a statistically significant interaction (p = 0.335; η2 = 0.059 and p = 0.103; η2 = 0.118), the main effect of a condition (p = 0.124; η2 = 0.126 and p = 0.197; η2 = 0.091), nor the main effect of the time point (p = 0.314; η2 = 0.06 and p = 0.196; η2 = 0.089) for vastus lateralis and biceps femoris stiffness. However, there was a statistically significant interaction (F = 3.516; p = 0.04; η2 = 0.163) for vastus lateralis oscillation frequency. The post hoc analysis showed a significantly higher vastus lateralis oscillation frequency at POST (p = 0.037; d = 0.29) and POST_10 (p = 0.02; d = 0.29) compared to PRE during the SUPRA condition. Moreover, Friedman’s test indicated statistically significant differences in biceps femoris oscillation frequency (test = 15.482; p = 0.008; Kendall’s W = 0.163). Pairwise comparison showed a significantly lower biceps femoris oscillation frequency in POST (p = 0.042; d = 0.31) and POST_10 (p = 0.015; d = 0.2) during the HIGH condition compared to that in the corresponding time points during the SUPRA condition. The results of this study indicate that the SUPRA front squats, compared to the high-loaded ones, cause a significant increase in biceps femoris and vastus lateralis oscillation frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.