The accurate assessment of the mean concentric barbell velocity (MCV) and its displacement are crucial aspects of resistance training. Therefore, the validity and reliability indicators of an easy-to-use inertial measurement unit (VmaxPro®) were examined. Nineteen trained males (23.1 ± 3.2 years, 1.78 ± 0.08 m, 75.8 ± 9.8 kg; Squat 1-Repetition maximum (1RM): 114.8 ± 24.5 kg) performed squats and hip thrusts (3–5 sets, 30 repetitions total, 75% 1RM) on two separate days. The MCV and displacement were simultaneously measured using VmaxPro® and a linear position transducer (Speed4Lift®). Good to excellent intraclass correlation coefficients (0.91 < ICC < 0.96) with a small systematic bias (p < 0.001; ηp2 < 0.50) for squats (0.01 ± 0.04 m·s−1) and hip thrusts (0.01 ± 0.05 m·s−1) and a low limit of agreement (LoA < 0.12 m·s−1) indicated an acceptable validity. The within- and between-day reliability of the MCV revealed good ICCs (0.55 < ICC < 0.91) and a low LoA (<0.16 m·s−1). Although the displacement revealed a systematic bias during squats (p < 0.001; ηp2 < 0.10; 3.4 ± 3.4 cm), no bias was detectable during hip thrusts (p = 0.784; ηp2 < 0.001; 0.3 ± 3.3 cm). The displacement showed moderate to good ICCs (0.43 to 0.95) but a high LoA (7.8 to 10.7 cm) for the validity and (within- and between-day) reliability of squats and hip thrusts. The VmaxPro® is considered to be a valid and reliable tool for the MCV assessment.
Peak oxygen uptake (VO 2 peak) and speed at first (LT1, minimal lactate equivalent) and second lactate threshold (LT2 = LT1 +1.5 mmol•L −1 ) are crucial swimming performance surrogates. The present randomized controlled study investigated the effects of blood flow restriction (BFR) during low-intensity swimming (LiT) on VO 2 peak, LT1, and LT2. Eighteen male swimmers (22.7 ±3.0 yrs; 69.9 ±8.5 kg; 1.8 ±0.1 m) were either assigned to the BFR or control (noBFR) group. While BFR was applied during LiT, noBFR completed the identical LIT without BFR application. BFR of the upper limb was applied via customized pneumatic cuffs (75% of occlusion pressure: 135 ±10 mmHg; 8 cm cuff width). BFR training took place three times a week over 5 weeks (accumulated weekly net BFR training: 60 min•week −1 ; occlusion per session: 2-times 10 min•session −1 ) and was used exclusively at low intensities. VO 2 peak, LT1, and LT2 diagnostics were employed. Bayesian credible intervals revealed notable VO 2 peak improvements by +0.29 L•min −1 kg −1 (95% credible interval: −0.26 to +0.85 L•min −1 kg −1 ) when comparing BFR vs. noBFR. Speed at LT1 −0.01 m•s −1 (−0.04 to +0.02 m•s −1 ) and LT2 −0.01 m•s −1 (−0.03 to +0.02 m•s −1 ) did not change meaningfully when BFR was employed. Fifteen sessions of LIT swimming (macrocycle of 5 h over 5 weeks) with a weekly volume of 60 min with BFR application adds additional impact on VO 2 peak improvement compared to noBFR LIT swimming. Occasional BFR applications should be considered as a promising means to improve relevant performance surrogates in trained swimmers. Highlights. Low-intensity swimming with blood flow restricted (BFR) induced superior peak oxygen consumption adaptations compared to non-restricted swimming training over a 5-week lasting training period . BFR and non-BFR swimming training-induced similar adaptations regarding swimming speed at first and second lactate threshold . In conclusion, BFR served as a feasible, promising and beneficial complementary training stimuli to traditional swimming training regarding oxygen consumption adaptations.
The combination of plyometric and resistance training (RT) is frequently used to increase power-related adaptations. Since plyometric training is most effective when athletes are in a well-rested state, the acute effect of RT on plyometric performance should be carefully considered. Thus, 15 highly trained males (23.1±3.5 yrs, 1.80±0.06 m, 79.1±7.9 kg) completed a load- and volume-matched velocity-based RT session with 10% velocity loss (VL10) and traditional 1-repetition maximum-based RT session to failure (TRF) in a randomized order. Repeated sprints (5 × 15 m), countermovement jumps (CMJs), and drop jumps (DJs) were measured before, immediately after, and 24 h after both sessions. Lactate, heart rate, and perceived effort (RPE) were measured. Sprint, CMJ, and DJ revealed significant interaction effects (rANOVA p<0.001, ηp 2≥0.63). Immediately afterward, sprint, DJ, and CMJ were less negatively affected (p≤0.03, SMD≥|0.40|) by VL10 vs. TRF. Sprint and CMJ were already recovered 24 h post-testing and showed no significant differences between TRF and VL10 (p≥0.07, SMD≤|0.21|). Twenty-four hours post-testing, DJs were still reduced during TRF but already recovered during VL10 (p=0.01, SMD=|0.70|). TRF resulted in higher lactate, heart rate, and RPE compared to VL10 (p≤0.019, η p 2≥0.27, SMD≥|0.68|). In conclusion, the non-failure-based VL10 impairs jump and sprint performance less than the failure-based TRF approach, despite matched volume and intensity.
Background: To the authors’ knowledge, there have been no studies comparing the acute responses to “all out” efforts in concentric (isoinertial) vs. eccentric (isovelocity) cycling. Methods: After two familiarization sessions, 12 physically active men underwent the experimental protocols consisting of a 2-min warm-up and 8 maximal efforts of 5 s, separated by 55 s of active recovery at 80 rpm, in concentric vs. eccentric cycling. Comparisons between protocols were conducted during, immediately after, and 24-h post-sessions. Results: Mechanical (Work: 82,824 ± 6350 vs. 60,602 ± 8904 J) and cardiometabolic responses (mean HR: 68.8 ± 6.6 vs. 51.3 ± 5.7% HRmax, lactate: 4.9 ± 2.1 vs. 1.8 ± 0.6 mmol/L) were larger in concentric cycling (p < 0.001). The perceptual responses to both protocols were similarly low. Immediately after concentric cycling, vertical jump was potentiated (p = 0.028). Muscle soreness (VAS; p = 0.016) and thigh circumference (p = 0.045) were slightly increased only 24-h after eccentric cycling. Serum concentrations of CK, BAG3, and MMP-13 did not change significantly post-exercise. Conclusions: These results suggest the appropriateness of the eccentric cycling protocol used as a time-efficient (i.e., ~60 kJ in 10 min) and safe (i.e., without exercise-induced muscle damage) alternative to be used with different populations in future longitudinal interventions.
The time spent above 90% of maximal oxygen uptake (V̇O2max) during high-intensity interval training (HIIT) sessions is intended to be maximized to improve V̇O2max. Since uphill running serves as a promising means to increase metabolic cost, we compared even and moderately inclined running in terms of time ≥90% V̇O2max and its corresponding physiological surrogates. Seventeen well-trained runners (8 females & 9 males; 25.8 ± 6.8yrs; 1.75 ± 0.08m; 63.2 ± 8.4kg; V̇O2max: 63.3 ± 4.2 ml/min/kg) randomly completed both a horizontal (1% incline) and uphill (8% incline) HIIT protocol (4-times 5min, with 90s rest). Mean oxygen uptake (V̇O2mean), peak oxygen uptake (V̇O2peak), lactate, heart rate (HR), and perceived exertion (RPE) were measured. Uphill HIIT revealed higher (p ≤ 0.012; partial eta-squared (pes) ≥ 0.351) V̇O2mean (uphill: 3.3 ± 0.6 vs. horizontal: 3.2 ± 0.5 L/min; standardized mean difference (SMD) = 0.15), V̇O2peak (uphill: 4.0 ± 0.7 vs. horizontal: 3.8 ± 0.7 L/min; SMD = 0.19), and accumulated time ≥90% V̇O2max (uphill: 9.1 ± 4.6 vs. horizontal: 6.4 ± 4.0 min; SMD = 0.62) compared to even HIIT. Lactate, HR, and RPE responses did not show mode*time rANOVA interaction effects (p ≥ 0.097; pes ≤0.14). Compared to horizontal HIIT, moderate uphill HIIT revealed higher fractions of V̇O2max at comparable perceived efforts, heartrate and lactate response. Therefore, moderate uphill HiiT notably increased time spent above 90% V̇O2max.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.