For receptor tyrosine kinases supramolecular organization on the cell membrane is critical for their function. Super-resolution fluorescence microscopy techniques have offered new opportunities for the analysis of single receptor localization. Here, we analysed the cluster formation of the epidermal growth factor receptor variant III (EGFRvIII), a deletion variant which is expressed in glioblastoma. The constitutively activated variant EGFRvIII is expressed in cells with an egfr gene amplification and is thought to enhance the tumorigenic potential especially of glioblastoma cells. Due to the lack of an adequate model system, it is still unclear how endogenous EGFRvIII expression alters cellular signalling and if it is organized in clusters like the wild type receptor. We have recently described the establishment of two pairs of iso-genetic cell lines (BS153 and DKMG), displaying endogenous EGFRvIII expression or not. Using these cell lines we investigated single receptor localization of EGFRvIII by high precision localization microscopy. Cluster analysis revealed that EGFRvIII is present in clusters on the surface of the cells, with about 60% or even more receptor molecules being assembled in clusters of approximately 100 nm in diameter whereby the cluster definition was iteratively determined. The signal to signal distance may indicate dimer formation while signal quantification indicates 1 × 10-5 × 10 EGFRvIII molecules per cell. Altogether, these data give unique insights into the membrane surface localization of EGFRvIII in glioblastoma cells. These insights will help to unveil the function of this tumour associated receptor variant which might lead to a better understanding of glioblastoma and therefore could lead to improved therapy approaches.
Fluorescence microscopy is an essential tool for imaging tagged biological structures. Due to the wave nature of light, the resolution of a conventional fluorescence microscope is limited laterally to about 200 nm and axially to about 600 nm, which is often referred to as the Abbe limit. This hampers the observation of important biological structures and dynamics in the nano-scaled range ~10 nm to ~100 nm. Consequentially, various methods have been developed circumventing this limit of resolution. Super-resolution microscopy comprises several of those methods employing physical and/or chemical properties, such as optical/instrumental modifications and specific labeling of samples. In this article, we will give a brief insight into a variety of selected optical microscopy methods reaching super-resolution beyond the Abbe limit. We will survey three different concepts in connection to biological applications in radiation research without making a claim to be complete.
Single-molecule localization microscopy (SMLM) enables imaging of biological structures in the nanometre range. Long measurement times are the consequence of this kind of microscopy due to the need of acquiring thousands of images. We built a setup that automatically detects target structures using confocal microscopy and images them with SMLM. Utilizing the Konstanz Information Miner (KNIME), we were able to connect a confocal microscope with an SMLM unit for targeted screening. In this process, we developed KNIME plugins to communicate with the microscope components and combined them to a workflow. Thus, measuring biological nanometre-sized structures in a sufficient number to get statistical significance becomes feasible. For proof of principle HIV-1 assembly complexes in HeLa cells derived from transfection of replication deficient viral construct were imaged by a fully automated screen.
Applying the right acquisition method in a fluorescence imaging-based screening context is of great importance to obtain an appropriate readout and to select the right scale of the screen. In order to save imaging time and data, we have developed routines for multiscale targeted imaging, providing both a broad overview of a sample and additional in-depth information for targets of interest identified within the screen. These objects can be identified and acquired on-the-fly by an interconnection of image acquisition and image analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.