Investigating how echo chambers emerge in social networks is increasingly crucial, given their role in facilitating the retention of misinformation, inducing intolerance towards opposing views, and misleading public and political discourse. Previously, the emergence of echo chambers has been attributed to psychological biases and inter-individual di erences, requiring repeated interactions among network-users and rewiring or pruning of social ties. Using an idealised population of social network users, the present results suggest that when combined with positive credibility perceptions of a communicating source, social media users' ability to rapidly share information with each other through a single cascade can be su icient to produce echo chambers. Crucially, we show that this requires neither special psychological explanation (e.g., bias or individual di erences), nor repeated interactions-though these may be exacerbating factors. In fact, this e ect is made increasingly worse the more generations of peer-to-peer transmissions it takes for information to permeate a network. This raises important questions for social network architects, if truly opposed to the increasing prevalence of deleterious societal trends that stem from echo chamber formation.
We investigate the idea that human concept inference utilizes local incremental search within a compositional mental theory space. To explore this, we study judgments in a challenging task, where participants actively gather evidence about a symbolic rule governing the behavior of a simulated environment. Participants construct mini-experiments before making generalizations and explicit guesses about the hidden rule. They then collect additional evidence themselves (Experiment 1) or observe evidence gathered by someone else (Experiment 2) before revising their own generalizations and guesses. In each case, we focus on the relationship between participants’ initial and revised guesses about the hidden rule concept. We find an order effect whereby revised guesses are anchored to idiosyncratic elements of the earlier guesses. To explain this pattern, we develop a family of process accounts that combine program induction ideas with local (MCMC-like) adaptation mechanisms. A particularly local variant of this adaptive account captures participants’ revisions better than a range of alternatives. We take this as suggestive that people deal with the inherent complexity of concept inference partly through use of local adaptive search in a latent compositional theory space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.